精英家教网 > 高中数学 > 题目详情
在等差数列{an}中,有3(a3+a5)+2(a7+a10+a13)=48,则此数列的前13项和为(  )
A、24B、39C、52D、104
分析:利用等差数列的性质可把3(a3+a5)+2(a7+a10+a13)=48,化简6a4+6a10=48,从而可a1+a13=a4+a10=8
S13=
13(a1+a13)
2
,从而可求
解答:解:∵3(a3+a5)+2(a7+a10+a13)=48,
利用等差数列的性质可得,6a4+6a10=48
∴a1+a13=a4+a10=8
S13=
13(a1+a13)
2
=52

故选C
点评:本题主要考查了等差数列的性质和数列的求和.解题的关键是利用了等差数列的性质:若m+n=p+q,则am+an=ap+aq
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等差数列{an}中,a1=-2010,其前n项的和为Sn.若
S2010
2010
-
S2008
2008
=2,则S2010=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a1+3a8+a15=60,则2a9-a10的值为
12
12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在等差数列{an}中,d>0,a2008、a2009是方程x2-3x-5=0的两个根,那么使得前n项和Sn为负值的最大的n的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,已知a1=2,a2+a3=13,则a4+a5+a6等于=
42
42

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,若S4=1,S8=4,则a17+a18+a19+a20的值=
9
9

查看答案和解析>>

同步练习册答案