【题目】三棱锥中,侧面底面, 是等腰直角三角形的斜边,且.
(1)求证: ;
(2)已知平面平面,平面平面, ,且到平面的距离相等,试确定直线及点的位置(说明作法及理由),并求三棱锥的体积.
【答案】(1)见解析;(2)见解析..
【解析】试题分析:(1)根据面面垂直可得线面垂直,故在内作,交于,连结,则由侧面底面, 得底面,然后证得O为中点即可得
从而得证;(2)根据面面平行的性质可得,由到平面的距离相等可得//平面或中点在平面上,又 平面,平面∩平面
// 或中点在上, 或为平行四边形,即. 所以,过点A在平面ABC内作直线平行于BC,则所作直线即为l,以A为圆心BC长为半径作弧与l交点即为点 (或在l上到A距离为2的点即为点)其中.
解析:
(Ⅰ)法一:在内作,交于,连结,
则由侧面底面,
得底面
又, ,
, 为等腰直角三角形, ,
又∩= ,
即
法二:取中点,连结, ,由侧面底面
得,
由已知,
,
又∩= ,
即
(Ⅱ)法一:
平面∥平面,平面∩平面,平面∩平面
到平面的距离相等 //平面或中点在平面上
又 平面,平面∩平面
// 或中点在上,
或为平行四边形,即.
所以,过点A在平面ABC内作直线平行于BC,则所作直线即为l,以A为圆心BC长为半径作弧与l交点即为点 (或在l上到A距离为2的点即为点)
其中
法二: 到平面的距离相等
平面∥平面,平面∩平面,平面∩平面
// 或中点在上,
或为平行四边形,即.
所以,过点A在平面ABC内作直线平行于BC,则所作直线即为l,以A为圆心BC长为半径作弧与l交点即为点 (或在l上到A距离为2的点即为点)
科目:高中数学 来源: 题型:
【题目】某商场为了了解顾客的购物信息,随机在商场收集了位顾客购物的相关数据如下表:
一次购物款(单位:元) | |||||
顾客人数 |
统计结果显示位顾客中购物款不低于元的顾客占,该商场每日大约有名顾客,为了增加商场销售额度,对一次购物不低于元的顾客发放纪念品.
(Ⅰ)试确定, 的值,并估计每日应准备纪念品的数量;
(Ⅱ)现有人前去该商场购物,求获得纪念品的数量的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2017年是内蒙古自治区成立70周年.某市旅游文化局为了庆祝内蒙古自治区成立70周年,举办了第十三届成吉思汗旅游文化周.为了了解该市关注“旅游文化周”居民的年龄段分布,随机抽取了名年龄在且关注“旅游文化周”的居民进行调查,所得结果统计为如图所示的频率分布直方图.
年龄 | |||
单人促销价格(单位:元) |
(Ⅰ)根据频率分布直方图,估计该市被抽取市民的年龄的平均数;
(Ⅱ)某旅行社针对“旅游文化周”开展不同年龄段的旅游促销活动,各年龄段的促销价位如表所示.已知该旅行社的运营成本为每人元,以频率分布直方图中各年龄段的频率分布作为参团旅客的年龄频率分布,试通过计算确定该旅行社的这一活动是否盈利;
(Ⅲ)若按照分层抽样的方法从年龄在, 的居民中抽取人进行旅游知识推广,并在知识推广后再抽取人进行反馈,求进行反馈的居民中至少有人的年龄在的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2018河南豫南九校高三下学期第一次联考】设函数.
(I)当时, 恒成立,求的范围;
(II)若在处的切线为,且方程恰有两解,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的方程是,圆的参数方程是(为参数),以原点为极点, 轴的非负半轴为极轴建立极坐标系.
(1)分别求直线与圆的极坐标方程;
(2)射线: ()与圆的交点为, 两点,与直线交于点,射线: 与圆交于, 两点,与直线交于点,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市为鼓励人们绿色出行,乘坐地铁,地铁公司决定按照乘客经过地铁站的数量实施分段优惠政策,不超过站的地铁票价如下表:
乘坐站数 | |||
票价(元) |
现有甲、乙两位乘客同时从起点乘坐同一辆地铁,已知他们乘坐地铁都不超过站,且他们各自在每个站下车的可能性是相同的.
(1)若甲、乙两人共付费元,则甲、乙下车方案共有多少种?
(2)若甲、乙两人共付费元,求甲比乙先到达目的地的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2018广东省深中、华附、省实、广雅四校联考】已知椭圆的离心率为,圆与轴交于点, 为椭圆上的动点, , 面积最大值为.
(I)求圆与椭圆的方程;
(II)圆的切线交椭圆于点,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com