精英家教网 > 高中数学 > 题目详情
18.已知角α的顶点在原点,始边与x轴的正半轴重合,终边经过点P(-3,$\sqrt{3}$).
(1)求tanα的值;
(2)定义行列式运算$|\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}|$=ad-bc,求行列式$|\begin{array}{l}{sinα}&{tanα}\\{1}&{cosα}\end{array}|$的值;
(3)若函数f(x)=$|\begin{array}{l}{cos(x+α)}&{-sinα}\\{sin(x+α)}&{cosα}\end{array}|$(x∈R),求函数y=$\sqrt{3}$f($\frac{π}{2}$-2x)+2f2(x)的最大值,并指出取到最大值时x的值.

分析 (1)利用任意角的三角函数的定义,即可求出sinα,cosα,tanα的值.
(2)化简行列式利用(1)的结论即可求解.
(3)先利用三角函数中的恒等变换应用求得f(x),y,利用正弦函数的性质即可得解.

解答 解:(1)角α的顶点在原点,始边与x轴的正半轴重合,终边经过点P(-3,$\sqrt{3}$),
∴OP=$\sqrt{(-3)^{2}+(\sqrt{3})^{2}}$=2$\sqrt{3}$.
∴sinα=$\frac{1}{2}$,cosα=-$\frac{\sqrt{3}}{2}$,tanα=-$\frac{\sqrt{3}}{3}$.
(2)$|\begin{array}{l}{sinα}&{tanα}\\{1}&{cosα}\end{array}|$=sinαcosα-tanα=$\frac{1}{2}×(-\frac{\sqrt{3}}{2})$+$\frac{\sqrt{3}}{3}$=$\frac{\sqrt{3}}{12}$.
(3)∵f(x)=$|\begin{array}{l}{cos(x+α)}&{-sinα}\\{sin(x+α)}&{cosα}\end{array}|$=cos(x+α)cosα+sinαsin(x+α)=cosxcos2α-sinxsinαcosα+sinxsinαcosα+cosxsin2α=cosx,
∴y=$\sqrt{3}$f($\frac{π}{2}$-2x)+2f2(x)=$\sqrt{3}$cos($\frac{π}{2}$-2x)+2cos2x=$\sqrt{3}$sin2x+cos2x+1=2sin(2x+$\frac{π}{6}$)+1,
∴当2x+$\frac{π}{6}$=2k$π+\frac{π}{2}$,即x=k$π+\frac{π}{6}$时,ymax=3.

点评 本题主要考查了任意角的三角函数的定义,正弦函数的性质,行列式的定义的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知集合A={x|x2-2x-3≤0},B={x|x2-2mx+m2-9≤0},m∈R
(1)若m=3,求A∩B;
(2)已知命题p:x∈A,命题q:x∈B,若q是p的必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知,如图,AB是eO的直径,AC切⊙O于点A,AC=AB,CO交⊙O于点P,CO的延长线交⊙O于点F,BP的延长线交AC于点E
(1)求证:FA∥BE
(2)求证:$\frac{AP}{PC}$=$\frac{FA}{AB}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图在△ABC中,∠C=90°,BE是∠CBD的平分线,DE⊥BE交AB于点D,圆O是△BDE外接圆.
(Ⅰ)求证:AC是圆O的切线;
(Ⅱ)如果AD=6,AE=6$\sqrt{2}$,求BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知点A(-3,5),B(2,15),试在直线l:3x-4y+4=0上找一点P,使|PA|+|PB|最小,并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,过点P作圆O的割线PBA与切线PE,E为切点,连接AE,BE,∠APE的平分线分别与AE、BE相交于C、D,若∠AEB=30°,则∠PCE等于(  )
A.150°B.75°C.105°D.60°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.点M(x0,$\frac{3}{2}$)是抛物线x2=2Py(P>0)上一点,若点M到该抛物线的焦点的距离为2,则点M到坐标原点的距离为(  )
A.$\frac{\sqrt{31}}{2}$B.$\sqrt{31}$C.$\sqrt{21}$D.$\frac{\sqrt{21}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某计算机网络有n个终端,每个终端在一天中使用的概率为p,则这个网络在一天中平均使用的终端个数为(  )
A.np(1-p)B.npC.nD.p(1-p)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(x)=$\frac{{2}^{x}}{{2}^{x}+\sqrt{2}}$.
(1)求证:f(x)+f(1-x)=1;
(2)求f($\frac{1}{2013}$)+f($\frac{2}{2013}$)+…+f($\frac{2012}{2013}$)的值.

查看答案和解析>>

同步练习册答案