精英家教网 > 高中数学 > 题目详情
已知椭圆两个焦点的坐标分别为,并且经过点.过左焦点,斜率为的直线与椭圆交于两点.设,延长分别与椭圆交于两点.
(I)求椭圆的标准方程;  (II)若点,求点的坐标;
(III)设直线的斜率为,求证:为定值.
解:(I)因为椭圆的焦点在轴上,所以设它的标准方程为
由椭圆的定义知,
.  ----------------2分
所以,
所以所求椭圆的标准方程为.  ---------------4分
(II)直线的方程为
代入椭圆方程,得
解得(舍),或.    --------------6分
代入直线的方程,得
所以点的坐标为.  ---------------7分
(III)设
直线的方程为,所以.
代入椭圆方程,消去得:
.   --------------8分
又因为点在椭圆上,有
方程化简为.     -----------------9分
,且,所以.
代入直线的方程,得,所以 .  -------------10分
同理

.  ------------------12分
因为三点共线,所以.
.  --------------------13分
所以,而.
所以为定值.  -------------------14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知双曲线与椭圆共焦点,且以为渐近线,求双曲线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆两焦点为  ,P在椭圆上,若 △的面积的最大值为12,则椭圆方程为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(理)已知有相同两焦点F1、F2的椭圆 + y2=1(m>1)和双曲线 - y2=1(n>0),P是它们的一个交点,则ΔF1PF2的形状是(   )
A.锐角三角形B.直角三角形C.钝有三角形D.随m、n变化而变化

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设椭圆恒过定点,则椭圆的中心到准线的距离的
最小值      ▲   .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知焦距为4的椭圆的左、右顶点分别为,椭圆的右焦点为,过作一条垂直于轴的直线与椭圆相交于,若线段的长为
(1)求椭圆的方程;
(2)设是直线上的点,直线与椭圆分别交于点,求证:直线必过轴上的一定点,并求出此定点的坐标;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆E的下焦点为、上焦点为,其离心 率。过焦点F2且与轴不垂直的直线l交椭圆于AB两点。
(1)求实数的值;  
(2)求DABOO为原点)面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线与椭圆交于A、B两点,点F为抛物线
的焦点,若∠AFB=,则椭圆的离心率为                          
A、        B、        C、        D、

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的焦点为,点在椭圆上的一点,且的等差中项,则该椭圆的方程为(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案