精英家教网 > 高中数学 > 题目详情
1.函数f(x)=Asin(ωx+φ),x∈R,(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分图象如图所示.
(Ⅰ)确定A,ω,φ的值,并写出函数f(x)的解析式;
(Ⅱ)描述函数y=f(x)的图象可由函数y=sinx的图象经过怎样的变换而得到;
(Ⅲ)若f($\frac{α}{2}$)=$\frac{10}{13}$($\frac{π}{3}$<α<$\frac{5π}{6}$),求tan2(α-$\frac{π}{3}$).

分析 (Ⅰ)由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数f(x)解析式.
(Ⅱ)利用函数y=Asin(ωx+φ)的图象变换规律,得出结论.
(Ⅲ)由条件求得故$tan(α-\frac{π}{3})=\frac{5}{12}$,再利用二倍角的正切公式,求得$tan2(α-\frac{π}{3})$的值.

解答 解:(Ⅰ)根据函数f(x)=Asin(ωx+φ)的图象知A=2.
∵$\frac{3T}{4}$=$\frac{5π}{12}$-($\frac{π}{3}$),∴T=π.∴ω=2.
由五点法作图知当x=$\frac{5π}{12}$时,ωx+φ=$\frac{π}{2}$,
即2×$\frac{5}{12}$π+φ=$\frac{π}{2}$,∴φ=-$\frac{π}{3}$.故$f(x)=2sin(2x-\frac{π}{3})$.
(Ⅱ)先把y=sinx的图象向右平移$\frac{π}{3}$个单位长度得到$y=sin(x-\frac{π}{3})$的图象,
使曲线上各点的横坐标变为原来的$\frac{1}{2}$,得到函数$y=sin(2x-\frac{π}{3})$的图象,
最后把曲线上各点的纵坐标变为原来的2倍,得到$y=2sin(2x-\frac{π}{3})$.
(Ⅲ)由$f(\frac{α}{2})=\frac{10}{13}$得$sin(α-\frac{π}{3})=\frac{5}{13}$,因为$\frac{π}{3}<α<\frac{{5{π}}}{6}$
所以$0<α-\frac{π}{3}<\frac{π}{2}$,得$cos(α-\frac{π}{3})=\frac{12}{13}$,故$tan(α-\frac{π}{3})=\frac{5}{12}$,
∴$tan2(α-\frac{π}{3})=\frac{{2tan(α-\frac{π}{3})}}{{1-{{tan}^2}(α-\frac{π}{3})}}=\frac{120}{119}$.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值.函数y=Asin(ωx+φ)的图象变换规律,二倍角的正切公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.设函数f(x)=$\left\{\begin{array}{l}{\frac{1}{{x}^{2}-1},x<3}\\{2{x}^{-\frac{1}{2}},x≥3}\end{array}\right.$,则f(f($\frac{\sqrt{5}}{2}$))=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在长方体ABCD-A1B1C1D1中,E,F分别是AB,CD1的中点,AA1=AD=1,AB=2..
(1)求证:EF∥平面BCC1B1
(2))求证:平面CD1E⊥平面D1DE;
(3)求三棱锥F-D1DE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.把216°化为弧度是(  )
A.$\frac{6π}{5}$B.$\frac{5π}{6}$C.$\frac{7π}{6}$D.$\frac{12π}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在半径为12mm的圆上,弧长为144mm的弧所对的圆心角的弧度数为12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知幂函数y=f(x)的图象过点($\sqrt{2}$,2$\sqrt{2}$),且f(m-2)>1,则m的取值范围是(  )
A.m<1或m>3B.1<m<3C.m<3D.m>3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在三棱柱ABC-A1B1C1中,CA=CB=AA1,∠BAA1=∠BAC=60°,点O是线段AB的中点.
(Ⅰ)证明:BC1∥平面OA1C;
(Ⅱ)若AB=2,A1C=$\sqrt{6}$,求二面角A-BC-A1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2cosx($\sqrt{3}$sinx+cosx)+m,(x∈R,m∈R).
(1)求f(x)的最小正周期;
(2)若f(x)在区间[0,$\frac{π}{2}$]上的最大值是6,求f(x)在区间[0,$\frac{π}{2}$]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知向量$\overrightarrow{a}$=(1,-2),$\overrightarrow{b}$=(x,2),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则实数x的值为-1.

查看答案和解析>>

同步练习册答案