精英家教网 > 高中数学 > 题目详情
如图,过抛物线x2=2py (p>0)焦点F的直线l交抛物线于点A、B,交准线于点C,若|AC|=2|AF|,且|BF|=8,则此抛物线的方程为(  )
A、x2=4y
B、x2=8 y
C、x2=2y
D、x2=16y
考点:抛物线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:由题意求得直线AB的斜率,写出直线方程的点斜式,和抛物线联立后求得B的纵坐标,由抛物线的焦点弦公式结合|BF|=8求得2p,则抛物线方程可求.
解答: 解:如图,

由|AC|=2|AF|,得∠ACM=30°,
即直线l的倾斜角为30°,斜率为
3
3

∴AB方程为y=
3
3
x+
p
2

联立
y=
3
3
x+
p
2
x2=2py
,得12y2-20py+3p2=0.
解得:y1=
p
6
y2=
3p
2

由图可知:|BF|=|BN|=
3p
2
+
p
2
=2p

∴2p=8.
则抛物线的方程为x2=8y.
故选:B.
点评:本题考查了抛物线的简单几何性质,考查了抛物线的焦点弦公式,体现了数学转化思想方法,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设全集为R,A={x|x(x-2)<0},B={x|y=ln(1-x)},则A∩(∁RB)=(  )
A、(-2,1)
B、[1,2)
C、(-2,1]
D、(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下命题:
①如果函数f(x)在区间(a,b)内可导,那么导数等于零的点一定是极值点;
②若复数z1,z2满足z1+z2,z1•z2都是实数,则z1,z2互为共轭复数;
③连续函数f(x)的图象与直线y=0,x=b(a<b)所围成的面积是
b
a
f(x)dx;
④反证法就是通过证明逆命题来证明原命题.
其中正确命题的个数是(  )
A、3B、2C、1D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
OA
|=1,|
OB
|=
3
,且
AO
OB
,设
OC
=m
OA
+n
OB

(1)若C点满足
AC
=t
CB
,求m+n的值;
(2)若C满足∠AOC=30°,求
m
n
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P为抛物线y2=4x上的动点,点P在y轴上的射影是M,点A的坐标是(6,5),则|PA|+|PM|的最小值是(  )
A、8
B、7
C、5
2
D、5
2
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a、b、c分别是角A、B、C的对边,且(2a+b)cosC+ccosB=0.
(2)求∠C;
(2)若a、b、c成等差数列,b=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+(a-1)x+a为偶函数.
(1)求a的值;
(2)设函数,g(x)=
f(x)
x
,当x∈[1,+∞]时,不等式g(x)+f(m)+2m≥5恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1的焦点为F(-c,0),F′(c,0),c>0,过F且平行于双曲线渐近线的直线与抛物线y2=4cx交于点P,若P在以FF′为直径的圆上,则该双曲线的离心率平方为(  )
A、
3+
5
2
B、
5
C、
5
-1
2
D、
1+
5
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+ϕ),(其中x∈R,A>0,ω>0,|ϕ|<
π
2
)的部分图象如图所示.
(1)求f(x)的解析式;
(2)当x∈[
π
6
3
]时,f(x)的最值及其对应x的值;
(3)把函数y=f(x)图象向左平移
π
3
个单位,得到函数y=g(x)图象,请写出g(x)表达式并求出g(x)图象的对称轴和对称中心.

查看答案和解析>>

同步练习册答案