精英家教网 > 高中数学 > 题目详情
15、如图所示,在四面体ABCD中,E,F,G分别是棱AB,AC,CD的中点,则过E,F,G的截面把四面体分成两部分的体积之比VADEFGH:VBCEFGH=
1:1
分析:在四面体ABCD中,E,F,G分别是棱AB,AC,CD的中点,则过E,F,G的截面把四面体分成两部分,每一部分都可以可作是一个三棱锥和一个四棱锥两部分的体积和,适当划分,使得四棱锥和三棱锥体积分别相等,即可解得结果.
解答:解:图1中连接DE、DF,
VADEFGH=VD-EFGH+VD-EFA
图2中,连接BF、BG,
VBCEFGH=VB-EFGH+VG-CBF
E,F,G分别是棱AB,AC,CD的中点,
所以VD-EFGH=VB-EFGH
VD-EFA的底面面积是VG-CBF的一半,高是它的2倍,
所以二者体积相等.
所以VADEFGH:VBCEFGH=1:1
故答案为:1:1
点评:本题考查棱锥的结构特征,几何体的体积,考查空间想象能力,逻辑思维能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,在四面体P-ABC中,PA⊥BC,PB⊥AC,BC=2,PB=PC,P-BC-A是60°的二面角.
(1)求证:PC⊥AB;
(2)求四面体P-ABC的体积.

查看答案和解析>>

科目:高中数学 来源:数学教研室 题型:013

如图所示,在四面体ABCD中,E、F分别是AC与BD的中点,若CD=2AB=4,EF⊥BA,则EF与CD所成的角为

[  ]

A.90°
B.45°
C.60°
D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:013

如图所示,在四面体ABCD中,EF分别是ACBD的中点,若CD=2AB=4EFBA,则EFCD所成的角为

[  ]

A90°

B45°

C60°

D30°

查看答案和解析>>

科目:高中数学 来源:2014届云南省高一下学期期中数学试卷(解析版) 题型:选择题

如图所示,在四面体ABCD中,若截面PQMN是正方形,则在下列命题中,错误的为

A.ACBD

B.AC∥截面PQMN

C.ACBD

D.异面直线PMBD所成的角为45°

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在四面体P-ABC中,PA⊥BC,PB⊥AC,BC=2,PB=PC,P-BC-A是60°的二面角.
(1)求证:PC⊥AB;
(2)求四面体P-ABC的体积.

查看答案和解析>>

同步练习册答案