精英家教网 > 高中数学 > 题目详情

【题目】若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数.下面我们参照学习函数的过程与方法,探究分段函数的图象与性质.列表:

x

0

1

2

3

y

1

2

1

0

1

2

描点:在平面直角坐标系中,以自变量x的取值为横坐标,以相应的函数值y为纵坐标,描出相应的点,如图所示.

1)如图,在平面直角坐标系中,观察描出的这些点的分布,作出函数图象;

2)研究函数并结合图象与表格,回答下列问题:

①点在函数图象上,      ;(填

②当函数值时,求自变量x的值;

③在直线的右侧的函数图象上有两个不同的点,且,求的值;

④若直线与函数图象有三个不同的交点,求a的取值范围.

【答案】1)答案见解析;(2)①;②;③;④.

【解析】

1)描点连线即可;

2)①观察函数图象,结合已知条件即可求得答案;

②把y=2代入y=|x-1|进行求解即可;

③由图可知时,点关于x=1对称,利用轴对称的性质进行求解即可;

④观察图象即可得答案.

1)如图所示:

2)①

AB上,yx的增大而增大,

CD上,且单调递增,

故答案为

②当时,

时,(舍去);

综上:当时,

的右侧,

时,点关于对称,

④由图象可知,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在几何体平面平面四边形为菱形 中点.

1)求证: 平面

2)求二面角的平面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若定义域为的函数同时满足以下三条:

(ⅰ)对任意的总有(ⅱ)

(ⅲ)若则有就称为“A函数”,下列定义在的函数中为“A函数”的有_______________

;②

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2010-2018年之间,受益于基础设施建设对光纤产品的需求,以及个人计算机及智能手机的下一代规格升级,电动汽车及物联网等新机遇,连接器行业增长呈现加速状态.根据该折线图,下列结论正确的个数为( )

①每年市场规模量逐年增加;

②增长最快的一年为2013~2014;

③这8年的增长率约为40%;

④2014年至2018年每年的市场规模相对于2010年至2014年每年的市场规模,数据方差更小,变化比较平稳

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班数学兴趣小组对函数的图象和性质将进行了探究,探究过程如下,请补充完整.

1)自变量的取值范围是除外的全体实数,的几组对应值列表如下:

其中,_________

2)根据上表数据,在如图所示的平面直角坐标系中描点并画出了函数图象的一部分,请画出该函数图象的另一部分;

3)观察函数图象,写出一条函数性质;

4)进一步探究函数图象发现:

①函数图象与轴交点情况是________,所以对应方程的实数根的情况是________

②方程_______个实数根;

③关于的方程个实数根,的取值范围是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知复数z,(m∈R,i是虚数单位).

(1)若z是纯虚数,求m的值;

(2)设z的共轭复数,复数+2z在复平面上对应的点在第一象限,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】月份,某市街头出现共享单车,到月份,根据统计,市区所有人骑行过共享单车的人数已占,骑行过共享单车的人数中,有是大学生(含大中专及高职),该市区人口按万计算,大学生人数约万人.

1)任选出一名大学生,求他(她)骑行过共享单车的概率;

2)随单车投放数量增加,乱停乱放成为城市管理的问题,以下是累计投放单车数量与乱停乱放单车数量之间的关系图表:

累计投放单车数量

乱停乱放单车数量

①计算关于的线性回归方程(其中精确到值保留三位有效数字),并预测当时,单车乱停乱放的数量;

②已知该市共有五个区,其中有两个区的单车乱停乱放数量超过标准.在“双创”活动中,检查组随机抽取三个区调查单车乱停乱放数量, 表示“单车乱停乱放数量超过标准的区的个数”,求的分布列和数学期望.

参考公式和数据:回归直线方程中的斜率和截距的最小二乘法估计公式分别为 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知多面体中,为菱形,平面.

(1)求证:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xiyi)(i=12n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是

A. yx具有正的线性相关关系

B. 回归直线过样本点的中心(

C. 若该大学某女生身高增加1cm,则其体重约增加0.85kg

D. 若该大学某女生身高为170cm,则可断定其体重比为58.79kg

查看答案和解析>>

同步练习册答案