精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,以原点为极点,以轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为

1)求曲线的直角坐标方程并指出其形状;

2)设是曲线上的动点,求的取值范围.

【答案】(1;(2.

【解析】试题分析:(1)直接根据极坐标和直角坐标方程互化公式求解得到其直角坐标方程,然后,再将其化为标准方程即可判断其形状;(2)依据曲线的参数方程,可以设该点的三角形式,然后,借助于三角函数的有界性求最值.

试题解析:(1)由ρ24ρcos70可得ρ24ρcosθ4ρsinθ70,化为直角坐标方程得x2y24x4y70,即(x22+(y221,它表示以(2,2)为圆心,以1为半径的圆.

2)由题意可设x2cosθy2sinθ,则t=(x1)(y1)=(3cosθ)(3sinθ)=93sinθcosθ)+sinθcosθ.

sinθcosθm,平方可得12sinθcosθm2

所以sinθcosθt93mm23m(-≤m≤).由二次函数的图象可知t的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知=(sinxcosx),=(cosφ,sinφ)(|φ|<).函数

fx)=fx)=fx).

(Ⅰ)求fx)的解析式及单调递增区间;

(Ⅱ)将fx)的图象向右平移单位得gx)的图象,若gx)+1≤ax+cosxx∈[0, ]上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)求函数的最小值;

)设),讨论函数的单调性;

)若斜率为的直线与曲线交于两点,其中,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的参数方程为为参数),当时,曲线上对应的点为.以原点为极点,以轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为

(I)求曲线的普通方程和曲线的直角坐标方程;

(II)设曲线的公共点为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,且过点.若点在椭圆上,则点称为点的一个“椭点”.

(1)求椭圆的标准方程;

(2)若直线 与椭圆相交于 两点,且 两点的“椭点”分别为 ,以为直径的圆经过坐标原点,试求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系曲线的参数方程为为参数).以平面直角坐标系的原点为极点轴的非负半轴为极轴建立极坐标系曲线的极坐标方程为

(1)求曲线的普通方程和曲线的直角坐标方程

(2)求曲线公共弦的长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某幼儿园为训练孩子的数字运算能力,在一个盒子里装有标号为1,2,3,4,5的卡片各2张,让孩子从盒子里任取3张卡片,按卡片上最大数字的9倍计分,每张卡片被取出的可能性都相等,用X表示取出的3张卡片上的最大数字

(1)求取出的3张卡片上的数字互不相同的概率;

(2)求随机变量x的分布列;

(3)若孩子取出的卡片的计分超过30分,就得到奖励,求孩子得到奖励的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)|2x1||x4|.

(1)解不等式f(x)>2

(2)若函数f(x)≥m恒成立,m的最大整数值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心轴上,半径为1,直线被圆所截的弦长为,且圆心在直线的下方.

(1)求圆的方程;

(2)设,若圆的内切圆,求的面积的最大值和最小值.

查看答案和解析>>

同步练习册答案