精英家教网 > 高中数学 > 题目详情
7.函数y=lg(12+x-x2)的单调递增区间是(-3,$\frac{1}{2}$].

分析 令t=12+x-x2 >0,求得函数的定义域,且y=lgt,本题即求函数t在定义域内的增区间,再利用二次函数的性质可得t在(-3,4)的增区间.

解答 解:令t=12+x-x2 >0,求得-3<x<4,故函数的定义域为(-3,4),且y=lgt.
故本题即求函数t在定义域内的增区间,再利用二次函数的性质可得t=12+x-x2 在(-3,4)的增区间为(-3,$\frac{1}{2}$],
故答案为:(-3,$\frac{1}{2}$].

点评 本题主要考查复合函数的单调性,二次函数、对数函数的定义域和单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,过椭圆C的焦点且垂直于x轴的直线被椭圆C截得的线段长为1.
(1)求椭圆C的方程;
(2)过点M(m,0)作圆x2+y2=1的切线l交曲线C于A,B两点,试探究|AB|是否有最大值,若有,求出|AB|的最大值及相应的实数m;若没有,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图在多面体ABC-A1B1C1中,AA1$\underset{∥}{=}$BB1,B1C1$\underset{∥}{=}$$\frac{1}{2}$BC,求证:AB1∥平面 A1C1C.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.己知f(x)=$\frac{sin2x}{{cos}^{2}x}$,下面关于此函数的表述,结论正确的序号为(1)(2)(4).
(1)f(x1)=f(x2),则x1-x2必是π的整数倍;
(2)在区间($\frac{π}{2}$,π)上是增函数;
(3)图象关于直线y=0对称;
(4)是奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知中心在原点,焦点在x轴上的双曲线的左、右焦点分别记为F1、F2,若P为双曲线的渐近线上一点,若|$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$|=|$\overrightarrow{P{F}_{1}}$-$\overrightarrow{P{F}_{2}}$|,且|$\overrightarrow{P{F}_{2}}$|=a(a为实轴长),求双曲线的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某人一次同时抛掷两枚均匀骰子(它们的六个面分别标有点数1、2、3、4、5、6)求:
(1)两枚骰子点数相同的概率;
(2)两枚骰子点数和为5的倍数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,已知矩形ABCD是圆柱O1O2的轴截面,N在上底面的圆周O2上,AC,BD相交于点M.
(Ⅰ)求证:平面ADN⊥平面CAN;
(Ⅱ)已知圆锥MO1和圆锥MO2的侧面展开图恰好拼成一个半径为2的圆,直线BC与平面CAN所成角的正切值为$\frac{\sqrt{3}}{6}$,求∠CDN的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)中,F为右焦点,A为左顶点,点B(0,b)且$\overrightarrow{AB}$•$\overrightarrow{BF}$=0,则此双曲线的离心率为$\frac{1+\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设F1,F2分别是双曲线3x2-y2=9的左右焦点,若P在双曲线上且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,则$|{\overrightarrow{P{F_1}}+\overrightarrow{P{F_2}}}|$的值为  (  )
A.$2\sqrt{5}$B.$2\sqrt{3}$C.$4\sqrt{3}$D.$4\sqrt{5}$

查看答案和解析>>

同步练习册答案