精英家教网 > 高中数学 > 题目详情

【题目】已知函数,在点处的切线方程为,求(1)实数的值;(2)函数的单调区间以及在区间上的最值.

【答案】(12

【解析】试题分析:(1)由题已知点处的切线方程,可获得两个条件;即:点

再函数的图像上,令点处的导数为切线斜率。可得两个方程,求出的值

2)由(1)已知函数的解析式,可运用导数求出函数的单调区间和最值。即:

为函数的增区间,反之为减区间。最值需求出极值与区间端点值比较而得。

试题解析:(1)因为在点处的切线方程为,所以切线斜率是

,求得,即点

又函数,则

所以依题意得,解得

2)由(1)知,所以

,解得,当;当

所以函数的单调递增区间是,单调递减区间是

,所以当x变化时,fx)和f′x)变化情况如下表:

X

0

0,2

2

2,3

3

f′x


-

0

+

0

fx

4


极小值


1

所以当时,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在正四面体中,分别是的中点,下面四个结论:

//平面

平面

③平面平面

④平面平面

其中正确结论的序号是______________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列五个命题:

①函数fx=2a2x-1-1的图象过定点(-1);

②已知函数fx)是定义在R上的奇函数,当x≥0时,fx=xx+1),若fa=-2则实数a=-12

③若loga1,则a的取值范围是(1);

④若对于任意xRfx=f4-x)成立,则fx)图象关于直线x=2对称;

⑤对于函数fx=lnx,其定义域内任意x1x2都满足f

其中所有正确命题的序号是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数是定义在上的奇函数,且为偶函数,当时,,若函数恰有一个零点,则实数的取值范围是

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)在复数范围内解方程为虚数单位)

2)设是虚数,是实数,且

i)求的值及的实部的取值范围;

ii)设,求证:为纯虚数;

iii)在(ii)的条件下求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的两条高线所在直线方程为2x-3y+1=0和xy=0,顶点A(1,2).

求(1)BC边所在的直线方程;

(2)△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中错误的个数是(

①若直线平面,直线,则;②若直线l和平面内的无数条直线垂直,则直线l与平面必相交;③过平面外一点有且只有一条直线和平面垂直;④过直线外一点有且只有一个平面和直线a垂直

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年2月22日.在平昌冬奥会短道速滑男子500米比赛中.中国选手武大靖以连续打破世界纪录的优异表现,为中国代表队夺得了本届冬奥会的首枚金牌,也创造中国男子冰上竞速项目在冬奥会金牌零的突破.某高校为调查该校学生在冬奥会期间累计观看冬奥会的时间情况.收集了200位男生、100位女生累计观看冬奥会时间的样本数据(单位:小时).又在100位女生中随机抽取20个人.已知这20位女生的数据茎叶图如图所示.

(1)将这20位女生的时间数据分成8组,分组区间分别为,在答题卡上完成频率分布直方图;

(2)以(1)中的频率作为概率,求1名女生观看冬奥会时间不少于30小时的概率;

(3)以(1)中的频率估计100位女生中累计观看时间小于20个小时的人数.已知200位男生中累计观看时间小于20小时的男生有50人请完成答题卡中的列联表,并判断是否有99 %的把握认为“该校学生观看冬奥会累计时间与性别有关”.

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

附:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求函数的定义域;

2)若函数有且仅有一个零点,求实数m的取值范围;

3)任取,若不等式对任意恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案