【题目】已知函数,在点处的切线方程为,求(1)实数的值;(2)函数的单调区间以及在区间上的最值.
【答案】(1)(2)
【解析】试题分析:(1)由题已知点处的切线方程,可获得两个条件;即:点
再函数的图像上,令点处的导数为切线斜率。可得两个方程,求出的值
(2)由(1)已知函数的解析式,可运用导数求出函数的单调区间和最值。即:
为函数的增区间,反之为减区间。最值需求出极值与区间端点值比较而得。
试题解析:(1)因为在点处的切线方程为,所以切线斜率是,
且,求得,即点,
又函数,则
所以依题意得,解得
(2)由(1)知,所以
令,解得,当;当
所以函数的单调递增区间是,单调递减区间是
又,所以当x变化时,f(x)和f′(x)变化情况如下表:
X | 0 | (0,2) | 2 | (2,3) | 3 |
f′(x) | - | 0 | + | 0 | |
f(x) | 4 | ↘ | 极小值 | ↗ | 1 |
所以当时, ,
科目:高中数学 来源: 题型:
【题目】给出下列五个命题:
①函数f(x)=2a2x-1-1的图象过定点(,-1);
②已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=x(x+1),若f(a)=-2则实数a=-1或2.
③若loga>1,则a的取值范围是(,1);
④若对于任意x∈R都f(x)=f(4-x)成立,则f(x)图象关于直线x=2对称;
⑤对于函数f(x)=lnx,其定义域内任意x1≠x2都满足f()≥
其中所有正确命题的序号是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)在复数范围内解方程(为虚数单位)
(2)设是虚数,是实数,且
(i)求的值及的实部的取值范围;
(ii)设,求证:为纯虚数;
(iii)在(ii)的条件下求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中错误的个数是( )
①若直线平面,直线,则;②若直线l和平面内的无数条直线垂直,则直线l与平面必相交;③过平面外一点有且只有一条直线和平面垂直;④过直线外一点有且只有一个平面和直线a垂直
A.0B.1C.2D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年2月22日.在平昌冬奥会短道速滑男子500米比赛中.中国选手武大靖以连续打破世界纪录的优异表现,为中国代表队夺得了本届冬奥会的首枚金牌,也创造中国男子冰上竞速项目在冬奥会金牌零的突破.某高校为调查该校学生在冬奥会期间累计观看冬奥会的时间情况.收集了200位男生、100位女生累计观看冬奥会时间的样本数据(单位:小时).又在100位女生中随机抽取20个人.已知这20位女生的数据茎叶图如图所示.
(1)将这20位女生的时间数据分成8组,分组区间分别为,在答题卡上完成频率分布直方图;
(2)以(1)中的频率作为概率,求1名女生观看冬奥会时间不少于30小时的概率;
(3)以(1)中的频率估计100位女生中累计观看时间小于20个小时的人数.已知200位男生中累计观看时间小于20小时的男生有50人请完成答题卡中的列联表,并判断是否有99 %的把握认为“该校学生观看冬奥会累计时间与性别有关”.
| 0.10 | 0.05 | 0.010 | 0.005 |
| 2.706 | 3.841 | 6.635 | 7.879 |
附:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)当时,求函数的定义域;
(2)若函数有且仅有一个零点,求实数m的取值范围;
(3)任取,若不等式对任意恒成立,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com