精英家教网 > 高中数学 > 题目详情
15.已知不等式f(x)=3$\sqrt{2}$sin $\frac{x}{4}$•cos $\frac{x}{4}$+$\sqrt{6}$cos2$\frac{x}{4}$-$\frac{\sqrt{6}}{2}$+m≤0,对于任意的-$\frac{5π}{6}$≤x≤$\frac{π}{6}$恒成立,则实数m的取值范围是(  )
A.m≥$\sqrt{3}$B.m≤$\sqrt{3}$C.m≤-$\sqrt{3}$D.-$\sqrt{3}$≤m≤$\sqrt{3}$

分析 利用根据二倍角公式和两角和公式对函数解析式化简整理,确定m的不等式关系,进而利用x的范围和正弦函数的性质确定$\sqrt{6}$sin($\frac{x}{2}$+$\frac{π}{6}$)的范围,进而求得m的范围.

解答 解:∵f(x)=3$\sqrt{2}$sin $\frac{x}{4}$•cos $\frac{x}{4}$+$\sqrt{6}$cos2$\frac{x}{4}$-$\frac{\sqrt{6}}{2}$+m=$\frac{3}{2}\sqrt{2}$sin$\frac{x}{2}$+$\frac{\sqrt{6}}{2}$cos$\frac{x}{2}$+m≤0,
∴-m≥$\sqrt{6}$sin($\frac{x}{2}$+$\frac{π}{6}$),
∵-$\frac{5π}{6}$≤x≤$\frac{π}{6}$,
∴-$\frac{π}{4}$≤$\frac{x}{2}$+$\frac{π}{6}$≤$\frac{π}{4}$,
∴-$\sqrt{3}$≤$\sqrt{6}$sin($\frac{x}{2}$+$\frac{π}{6}$)≤$\sqrt{3}$,
∴-m≥$\sqrt{3}$.
∴m≤-$\sqrt{3}$,
故选:C.

点评 本题主要考查了三角函数的化简求值,三角函数的最值问题,不等式恒成立的问题.涉及了知识面较多,考查了知识的综合性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.如图,在三棱台ABC-A1B1C1中,CC1⊥平面ABC,AB=2A1B1=2CC1,M,N分别为AC,BC的中点.
(1)求证:AB1∥平面C1MN;
(2)若AB⊥BC且AB=BC,求二面角C-MC1-N的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.两平行直线x+2y-1=0与2x+4y+3=0间的距离为(  )
A.$\frac{2}{5}\sqrt{5}$B.$\frac{{\sqrt{5}}}{2}$C.$\frac{4}{5}\sqrt{5}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列所给问题中,不可以设计一个算法求解的是(  )
A.求1+2+3+…+10的和B.解方程组$\left\{\begin{array}{l}{x+y+5=0}\\{x-y+3=0}\end{array}\right.$
C.求半径为3的圆的面积D.判断y=x2在R上的单调性

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.掷一枚均匀的正六面体骰子,设A表示事件“出现3点”,B表示事件“出现偶数点”,则P(A∪B)等于$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.直线 l:(2m+1)x+(m+1)y-7m-4=0(m∈R)被圆C:(x-1)2+(y-2)2=25 所截得的最短的弦长为4$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在平行四边形ABCD中,A(5,-1),B(-1,7),C(1,2),则D的坐标是(  )
A.(7,-6)B.(7,6)C.(6,7)D.(-7,6)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.若函数f(x)对于定义域内的任意x都满足$f(x)=f(\frac{1}{x})$,则称f(x)具有性质M.
(1)很明显,函数$f(x)=x+\frac{1}{x}$(x∈(0,+∞)具有性质M;请证明$f(x)=x+\frac{1}{x}$(x∈(0,+∞)在(0,1)上是减函数,在(1,+∞)上是增函数.
(2)已知函数g(x)=|lnx|,点A(1,0),直线y=t(t>0)与g(x)的图象相交于B、C两点(B在左边),验证函数g(x)具有性质M并证明|AB|<|AC|.
(3)已知函数$h(x)=|x-\frac{1}{x}|$,是否存在正数m,n,k,当h(x)的定义域为[m,n]时,其值域为[km,kn],若存在,求k的范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若集合M={x|(x-1)(x-5)<0},集合$N=\{x|y=\sqrt{4-x}\}$,则M∩N等于(  )
A.(1,4]B.(1,4)C.[4,5)D.(4,5)

查看答案和解析>>

同步练习册答案