精英家教网 > 高中数学 > 题目详情
4.已知几何体的三视图,该几何体的体积为$\frac{10π}{3}$

分析 根据几何体的三视图,得出该几何体是半圆锥与半圆柱的组合体,结合图中数据求出它的体积即可.

解答 解:根据几何体的三视图,得;
该几何体是上部为半圆锥,下部为半圆柱的组合体;
且底面圆的半径为2,圆柱的高为1,圆锥的高为2;
所以,该几何体的体积为
V=$\frac{1}{2}$×$\frac{1}{3}$π×22×2+$\frac{1}{2}$×π×22×1=$\frac{10π}{3}$.
故答案为:$\frac{10π}{3}$.

点评 本题考查了利用几何体的三视图求体积的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.若函数f(x)=ax5+bx3+cx+3,若f(3)=10,则f(-3)=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.正视图和俯视图为全等矩形的几何体不可能是(  )
A.四棱锥B.圆柱C.长方体D.三棱柱

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在直三棱柱(侧棱垂直底面的棱柱)ABC-A1B1C1中,∠ACB=90°,AC=3,BC=4,AA1=4,点D是AB的中点.
(Ⅰ)求证:AC⊥BC1
(Ⅱ)求证:AC1∥平面CDB1
(Ⅲ)求异面直线AC1与B1C所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知在平面直角坐标系xoy中的一个椭圆,它的中心在原点,左焦点为$F(-\sqrt{3},0)$,右顶点为D(2,0),P,Q分别是椭圆的左顶点和下顶点,过原点的直线交椭圆于A,B,且A点在第一象限,自A点作x轴的垂线,交x轴于C点,连BC.
(1)求该椭圆的标准方程;
(2)若AB平分线段PQ,求直线AB的斜率kAB;并在此情况下,求A到直线BC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某几何体的三视图如图所示,则该几何体的体积为(  )
A.5B.4C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知sinθ+cosθ=$\frac{1}{5}$,双曲线x2sinθ+y2cosθ=1的焦点在y轴上,则双曲线C的离心率e=$\frac{\sqrt{21}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知等差数列{an},满足a1=3,a5=15,数列{bn}满足b1=4,b5=31,设cn=bn-an,且数列{cn}为等比数列.
(1)求数列{an}和{bn}的通项公式.
(2)求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求下列函数的值域;
(1)f(x)=x-$\sqrt{1-2x}$;     
(2)f(x)=$\frac{1}{{\sqrt{x-{x^2}}}}$.

查看答案和解析>>

同步练习册答案