【题目】王老师是高三的班主任,为了在寒假更好的督促班上的学生完成学习作业,王老师特地组建了一个QQ群,群的成员由学生、家长、老师共同组成.已知该QQ群中男学生人数多于女学生人数,女学生人数多于家长人数,家长人数多于教师人数,教师人数的两倍多于男学生人数.则该QQ群人数的最小值为( )
A.20B.22C.26D.28
科目:高中数学 来源: 题型:
【题目】已知数列是公差的等差数列,且.
(1)求的前项的和;
(2)若,问在数列中是否存在一项(是正整数),使得成等比数列,若存在,求出的值,若不存在,请说明理由;
(3)若存在自然数(是正整数),满足,使得成等比数列,求所有整数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合,且中的元素个数大于等于5.若集合中存在四个不同的元素,使得,则称集合是“关联的”,并称集合是集合的“关联子集”;若集合不存在“关联子集”,则称集合是“独立的”.
分别判断集合和集合是“关联的”还是“独立的”?若是“关联的”,写出其所有的关联子集;
已知集合是“关联的”,且任取集合,总存在的关联子集,使得.若,求证:是等差数列;
集合是“独立的”,求证:存在,使得.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱锥,侧棱,底面三角形为正三角形,边长为,顶点在平面上的射影为,有,且.
(Ⅰ)求证: 平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)线段上是否存在点使得⊥平面,如果存在,求的值;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的左焦点为,上顶点为.已知椭圆的短轴长为4,离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设点在椭圆上,且异于椭圆的上、下顶点,点为直线与轴的交点,点在轴的负半轴上.若(为原点),且,求直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线、与曲线分别相交于点、和、,我们将四边形称为曲线的内接四边形.
(1)若直线和将单位圆分成长度相等的四段弧,求的值;
(2)若直线,与圆分别交于点、和、,求证:四边形为正方形;
(3)求证:椭圆的内接正方形有且只有一个,并求该内接正方形的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com