精英家教网 > 高中数学 > 题目详情
已知正四棱锥的各棱长均为4cm,则它的全面积等于
 
cm2
考点:棱柱、棱锥、棱台的侧面积和表面积
专题:计算题
分析:根据正四棱锥的结构特征知底面为正方形,侧棱都相等,由此分别计算棱锥的底面面积与侧面积,再相加.
解答: 解:正四棱锥的各棱长均为4cm,∴底面面积为42=16,
各侧面都是边长为4的等边三角形,
∴侧面积为4×
1
2
×4×4×
3
2
=16
3

∴正四棱锥的全面积S=16+16
3
(cm2).
故答案为:16+16
3
点评:本题考查了正四棱锥的结构特征,熟练掌握正四棱锥的结构特征是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知某中学高三文科班学生共有800人参加了数学与地理的水平测试,现学校决定利用随机数表法从中抽取100人进行成绩拉样统计,先将800人按001,002,…,800进行编号.
(1)如果从第8行第7列的数开始向右读,请你依次写出最先检测的3个人的编号;(下面摘取了第7行至第9行)

(2)抽取取100人的数学与地理的水平测试成绩如表:
人数数学
优秀良好及格
地理优秀7205
良好9186
及格a4b
成绩分为优秀、良好、及格三个等级,横向、纵向分别表示地理成绩与数学成绩,例如:表中数学成绩为良好的共有20+18+4=42人,若在该样本中,数学成绩优秀率为30%,求a,b的值.
(3)在地理成绩为及格的学生中,已知a≥10,b≥18,求数学成绩为优秀的人数比及格的人数少的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

若x,y满足
x+y≥2
2x-y≤4
x-y≥0

(1)求z=|x-2y-2|的最大值;
(2)求z=x2+y2的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的内角A、B、C成等差数列,且A、B、C所对的边分别是a,b,c,则下列结论中正确的是
 
.(写出所有正确结论的序号)
B=
π
3

②若a,b,c成等差数列,则△ABC为等边三角形;
③若a=2c,则△ABC为锐角三角形;
④若
AB
2
=
AB
AC
+
BA
BC
+
CA
CB
,则3A=C

⑤若tanA+tanC+
3
>0
,则△ABC为钝角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

某产品的广告费用x与销售额y的统计数据如下表:
广告费用x(万元) 4 2 3 5
销售额y(万元) 49 26 39 54
根据上表可得回归方程
y
=
b
x+
a
一定过点
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x+a)为奇函数,则a为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题
①命题“若x2-3x+2=0,则x=l”的否命题是“若x2-3x+2=0,则x≠1”
②命题p:? x0∈R,使sinx0>1,则¬p:?x∈R,使sinx≤1
③若p且q为假命题,则p、q.均为假命题
④“Φ=
π
2
+2kπ(k∈Z)“是函数y=sin(2x+Φ)为偶函数的充要条件.其中错误的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

以下四个命题:
①在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=acosB,则B=
π
4

②设
a
b
是两个非零向量且|
a
b
|=|
a
||
b
|,则存在实数λ,使得
b
a

③方程sinx-x=0在实数范围内的解有且仅有一个;
④函数f(x)=
|x|-sinx+1
|x|+1
的最大值为M,最小值为m,则M+m=4;
其中正确的命题是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某年青教师近五年内所带班级的数学平均成绩统计数据如下:
年份x年 2009 2010 2011 2012 2013
平均成绩y分 97 98 103 108 109
(1)利用所给数据,求出平均分与年份之间的回归直线方程
?
y
=bx+a
,并判断它们之间是正相关还是负相关.
(2)利用(1)中所求出的直线方程预测该教师2014年所带班级的数学平均成绩.
b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
a=
.
y
-b
.
x

查看答案和解析>>

同步练习册答案