精英家教网 > 高中数学 > 题目详情

【题目】给出下列四个命题:

①若命题,则

②若的极值点,则”的逆命题为真命题;

③“平面向量的夹角是钝角”的一个充分不必要条件是“”;

④命题“,使得”的否定是:“,均有”.

其中正确的个数是( )

A. 1B. 2C. 3D. 0

【答案】A

【解析】

①根据特称命题的否定,即可作出判断;②先写出原命题的逆命题,再判断其真假,从而判定其真假;③利用充分条件与必要条件的概念进行判断;④根据特称命题的否定,即可作出判断,得到答案.

①中,由全称命题与特称命题的关系,则命题,则,所以①错误的;

②中,命题的极值点,则”的逆命题为若,则的极值点,根据函数极值点的定义,可得是错误的;

③中,根据向量的夹角的概念可得,若,则向量的夹角的范围是,所以③不正确;

④根据全称命题与特称命题的关系,可得命题“,使得”的否定是:“,均有”是正确的,故选A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义在R上的偶函数f(x)满足f(x+1)=-f(x)且f(x)在[-1,0]上是增函数,给出下列四个命题:

f(x)是周期函数;②f(x)的图象关于x=1对称;③f(x)在[1,2]上是减函数;④f(2)=f(0).

其中正确命题的序号是____________.(请把正确命题的序号全部写出来)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)当时,证明:为偶函数

)若上单调递增,求实数的取值范围

)若,求实数的取值范围,使上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(12分)

如图,在四棱锥

.

(1)当PB=2时,证明:平面平面ABCD.

(2)当四棱锥的体积为,且二面角为钝角时,求直线PA与平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在R上的奇函数

(1)求实数的值

(2)如果对任意,不等式恒成立,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程](10分

在极坐标系中,圆C的极坐标方程为,若以极点O为原点,极轴为x轴的正半轴建立平面直角坐标系.

(1)求圆C的一个参数方程;

(2)在平面直角坐标系中,是圆C上的动点,试求的最大值,并求出此时点P的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校将甲、乙等6名新招聘的老师分配到4个不同的年级,每个年级至少分配1名教师,且甲、乙两名老师必须分到同一个年级,则不同的分法种数为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,共享单车的出现为市民绿色出行提供了极大的方便,某共享单车公司计划在甲、乙两座城市共投资240万元,根据行业规定,每个城市至少要投资80万元,由前期市场调研可知:甲城市收益与投入(单位:万元)满足,乙城市收益与投入(单位:万元)满足,设甲城市的投入为(单位:万元),两个城市的总收益为(单位:万元).

(1)当投资甲城市128万元时,求此时公司总收益;

⑵试问如何安排甲、乙两个城市的投资,才能使公司总收益最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族中的成员仅以自驾或公交方式通勤.分析显示:当)的成员自驾时,自驾群体的人均通勤时间为(单位:分钟),而公交群体的人均通勤时间不受影响,恒为分钟,试根据上述分析结果回答下列问题:

(1)当在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?

(2)求该地上班族的人均通勤时间的表达式;讨论的单调性,并说明其实际意义.

查看答案和解析>>

同步练习册答案