解:(1)因为f′(x)=(2x-3)e
x+(x
2-3x+3)e
x,
由f′(x)>0?x>1或x<0,
由f′(x)<0?0<x<1,
∴函数f(x)在(-∞,0),(1,+∞)上单调递增,在(0,1)上单调递减,
要使函数f(x)在[-2,t]上为单调函数,则-2<t≤0,
(2)因为函数f(x)在(-∞,0),(1,+∞)上单调递增,在(0,1)上单调递减,
所以f(x)在x=1处取得极小值e,
又f(-2)=13e
-2<e,
所以f(x)在[2,+∞)上的最小值为f(-2),
从而当t>-2时,f(-2)<f(t),
即m<n,
(3)证:∵
,∴
,
即为x
02-x
0=
,
令g(x)=x
2-x-
,从而问题转化为证明方程g(x)=
=0在(-2,t)上有解并讨论解的个数,
因为g(-2)=6-
(t-1)
2=-
,g(t)=t(t-1)-
=
,
所以当t>4或-2<t<1时,g(-2)•g(t)<0,
所以g(x)=0在(-2,t)上有解,且只有一解,
当1<t<4时,g(-2)>0且g(t)>0,
但由于g(0)=-
<0,所以g(x)=0在(-2,t)上有解,且有两解,
当t=1时,g(x)=x
2-x=0,解得x=0或1,
所以g(x)=0在(-2,t)上有且只有一解,
当t=4时,g(x)=x
2-x-6=0,
所以g(x)=0在(-2,t)上也有且只有一解,
综上所述,对于任意的t>-2,总存在x
0∈(-2,t),满足
,
且当t≥4或-2<t≤1时,有唯一的x
0适合题意,
当1<t<4时,有两个x
0适合题意.
分析:(Ⅰ)首先求出函数的导数,然后根据导数与函数单调区间的关系确定t的取值范围,
(Ⅱ)运用函数的极小值进行证明,
(Ⅲ)首先对关系式进行化简,然后利用根与系数的关系进行判定.
点评:本题以函数为载体,考查利用导数确定函数的单调性,考查函数的极值,同时考查了方程解的个数问题,综合性强,尤其第(3)问能力要求比较高.