【题目】已知函数f(x)= ;
(1)证明f(x)为奇函数;
(2)证明f(x)在区间(0,2)上为减函数.
【答案】
(1)证明:f(x)的定义域是(﹣∞,0)∪(0,+∞),
f(﹣x)= =﹣f(x),
故函数f(x)是奇函数
(2)证明:f(x)=x+ ,
设x1,x2∈(0,2),且x1<x2,
∴f(x1)﹣f(x2)=(x1﹣x2)+4( ﹣ )=(x1﹣x2)+ =(x1﹣x2)(1﹣ )=(x1﹣x2) ,
∵0<x1<x2<2,
∴x1﹣x2<0,x1x2>0,x1x2<4,
∴f(x1)﹣f(x2)>0,
即f(x1)>f(x2),
∴f(x)在区间(0,2)上为减函数
【解析】1、由f(x)的定义域是(﹣∞,0)∪(0,+∞)根据奇函数的定义可得f(x)是奇函数。
2、由函数增减性的定义可得。
【考点精析】解答此题的关键在于理解函数单调性的判断方法的相关知识,掌握单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较,以及对函数的奇偶性的理解,了解偶函数的图象关于y轴对称;奇函数的图象关于原点对称.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2x﹣1+a,g(x)=bf(1﹣x),其中a,b∈R,若关于x的不等式f(x)≥g(x)的解的最小值为2,则实数a的取值范围是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l与椭圆 交于两点A(x1 , y1),B(x2 , y2),椭圆上的点到下焦点距离的最大值、最小值分别为 ,向量 =(ax1 , by1), =(ax2 , by2),且 ⊥ ,O为坐标原点. (Ⅰ)求椭圆的方程;
(Ⅱ)判断△AOB的面积是否为定值,如果是,请给予证明;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设全集U={1,2,3,4,5},集合A={2,3,4},B={2,5},则B∪(UA)=( )
A.{5}
B.{1,2,5}
C.{1,2,3,4,5}
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图线段AB过x轴正半轴上一定点M(m,0),端点A、B到x轴距离之积为2m,以x轴为对称轴,过A,O,B三点作抛物线.
(1)求抛物线方程;
(2)若 =﹣1,求m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com