精英家教网 > 高中数学 > 题目详情
已知x>0,y>0,
1
x
+
9
y
=1
,若不等式m2+6m-x-y<0恒成立,则实数m的取值范围是
-8<m<2
-8<m<2
分析:x>0,y>0,
1
x
+
9
y
=1
可得x+y=(x+y)(
1
x
+
9
y
)=10+
9x
y
+
y
x
,利用基本不等式可求x+y得最小值,而m2+6m-x-y<0恒成立?m2+6m<x+y恒成立?m2+6m<(x+y)min,从而可求m的范围
解答:解:∵x>0,y>0,
1
x
+
9
y
=1

∴x+y=(x+y)(
1
x
+
9
y
)=10+
9x
y
+
y
x
≥10+2
9x
y
y
x
=16

当且仅当
9x
y
=
y
x
即y2=9x2时取等号“=”
x>0,y>0,
1
x
+
9
y
=1
,此时x=4,y=12
∵m2+6m-x-y<0恒成立即m2+6m<x+y恒成立
只要使m2+6m<(x+y)min=16
由m2+6m<16可得-8<m<2
故答案为:-8<m<2
点评:本题主要考查了函数的恒成立问题m≤f(x)恒成立?m≤f(x)得最小值(m≥f(x)恒成立?m≥f(x)的最大值),体现出函数 恒成立与最值的相互转化,解题的关键是利用“1”的变形及基本不等式求解函数的最小值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知x>0,y>0且x+y=xy,则x+y的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:013

(2007宁夏,7)已知x0y0xaby成等差数列,xcdy成等比数列,则的最小值是

[  ]

A0

B1

C2

D4

查看答案和解析>>

科目:高中数学 来源:安徽省合肥八中2012届高三第三次段考数学理科试题 题型:013

已知x>0,y>0,x,a,b,y成等差数列,x,c,d,y成等比数列,则的最小值是

[  ]
A.

0

B.

1

C.

2

D.

4

查看答案和解析>>

科目:高中数学 来源:2014届江西省高一下学期第7周周练数学试卷(解析版) 题型:选择题

已知x>0,y>0,x,a,b,y成等差数列,x,c,d,y成等比数列,则的最小值是(  ) A.0  B.1  C.2  D.4

 

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知集合M={(x,y)|x+y=1},映射f:M→N,在f作用下点(x,y)的象是(2x,2y),则集合N=


  1. A.
    {(x,y)|x+y=2,x>0,y>0}
  2. B.
    {(x,y)|xy=1,x>0,y>0}
  3. C.
    {(x,y)|xy=2,x<0,y<0}
  4. D.
    {(x,y)|xy=2,x>0,y>0}

查看答案和解析>>

同步练习册答案