精英家教网 > 高中数学 > 题目详情

【题目】在等比数列{an}中,an>0 (nN ),公比q(0,1)a1a5+2a3a5a2a8=25,又a3a5的等比中项为2.

(1) 求数列{an}的通项公式;

(2) ,数列{bn}的前n项和为Sn,当最大时,求n的值.

【答案】(1) 25n (2) 89

【解析】

(1)根据等比数列的性质可知a1a5=a32,a2a8=a52化简a1a5+2a3a5+a2a8=25得到a3+a5=5,又因为a3a5的等比中项为2,联立求得a3a5的值,求出公比和首项即可得到数列的通项公式;(2)把an代入到bn=中得到bn的通项公式,即可得到前n项和的通项sn;把sn代入得到,讨论求出各项和的最大值时n的取值

解 (1)∵a1a5+2a3a5a2a8=25,

a+2a3a5a=25,

an>0,∴a3a5=5.

a3a5的等比中项为2,

a3a5=4,而q∈(0,1),

a3>a5,∴a3=4,a5=1.

qa1=16,∴an=16×n-1=25-n.

(2)bn=log2an=5-n

bn+1bn=-1,

∴{bn}是以b1=4为首项,-1为公差的等差数列,

Sn

∴当n≤8时, >0;

n=9时,=0;

n>9时, <0.

n=89时,+…+最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是正方形,平面,点是线段上任意一点.

1)求证:

2)试确定点的位置,使与平面所成角的大小为30°.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某港口某天0时至24时的水深(米)随时间(时)变化曲线近似满足如下函数模型.若该港口在该天0时至24时内,有且只有3个时刻水深为3米,则该港口该天水最深的时刻不可能为(

A.16B.17C.18D.19

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是曲线上的一个动点,曲线在点处的切线与轴、轴分别交于两点,点是坐标原点,①;②的面积为定值;③曲线上存在两点使得是等边三角形;④曲线上存在两点使得是等腰直角三角形,其中真命题的个数是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,侧棱底面,点在棱上,且.

(1)证明:平面

(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的长轴长与焦距分别为方程的两个实数根.

1)求椭圆的标准方程;

2)若直线过点且与椭圆相交于两点,是椭圆的左焦点,当面积最大时,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题:

①若将一组样本数据中的每个数据都加上同一个常数后,则样本的方差不变;

②在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高;

③设随机变量服从正态分布,若,则

④对分类变量的随机变量的观测值来说,越小,判断“有关系”的把握越大.其中正确的命题序号是(

A.①②B.①②③C.①③④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校为了解高二学生每天自主学习中国古典文学的时间,随机抽取了高二男生和女生各50名进行问卷调查,其中每天自主学习中国古典文学的时间超过3小时的学生称为古文迷,否则为非古文迷,调查结果如下表:

古文迷

非古文迷

合计

男生

26

24

50

女生

30

20

50

合计

56

44

100

参考公式:,其中

参考数据:

0.500

0.400

0.250

0.050

0.025

0.010

0.455

0.708

1.321

3.841

5.024

6.635

1)根据上表数据判断能否有60%的把握认为古文迷与性别有关?

2)现从调查的女生中按分层抽样的方法抽出5人进行理科学习时间的调查,求所抽取的5人中古文迷非古文迷的人数;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xex-alnx(无理数e=2.718…).

(1)若f(x)在(0,1)单调递减,求实数a的取值范围;

(2)当a=-1时,设g(x)=x(f(x)-xex)-x3+x2-b,若函数g(x)存在零点,求实数b的最大值.

查看答案和解析>>

同步练习册答案