精英家教网 > 高中数学 > 题目详情

【题目】已知函数,若关于x的方程3个不同的实数根,则实数a的取值集合为________.

【答案】

【解析】

,根据关于 x的方程3个不同的实数根,分所以方程1个根,在2个根和方程2个根,在1个根,利用判别式法和导数法求解.

因为关于 x的方程3个不同的实数根,

如图所示:

.

时,若方程1个实数根,

联立得,即

解得:

此时

时,,当时,

所以时,函数取得极小值:

所以当时,方程1个根,在2个根,符合题意.

时,若方程2个实数根,

,解得:

此时则需方程1个根,

所以

时,,当时,

所以时,函数取得极小值:

解得

所以,符合题意.

综上:若关于x的方程3个不同的实数根,则实数a的取值集合为

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】动点到点的距离与到直线的距离的比值为

1)求动点的轨迹的方程;

2)过点的直线与点的轨迹交于两点,设点到直线的距离分别为,当时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知xy之间的几组数据如表:

x

1

2

3

4

y

1

m

n

4

如表数据中y的平均值为2.5,若某同学对m赋了三个值分别为1.522.5,得到三条线性回归直线方程分别为,对应的相关系数分别为,下列结论中错误的是(

参考公式:线性回归方程中,其中.相关系数

A.三条回归直线有共同交点B.相关系数中,最大

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有边长均为1的正方形正五边形正六边形及半径为1的圆各一个,在水平桌面上无滑动滚动一周,它们的中心的运动轨迹长分别为,则(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司对旗下的甲、乙两个门店在19月份的营业额(单位:万元)进行统计并得到如图折线图.

下面关于两个门店营业额的分析中,错误的是( )

A.甲门店的营业额折线图具有较好的对称性,故而营业额的平均值约为32万元

B.根据甲门店的营业额折线图可知,该门店营业额的平均值在[2025]内

C.根据乙门店的营业额折线图可知,其营业额总体是上升趋势

D.乙门店在这9个月份中的营业额的极差为25万元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是各项均为正数的无穷数列,且满足.

1)若,求a的值;

2)设数列满足,其前n项的和为.

①求证:是等差数列;

②若对于任意的,都存在,使得成立.求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小区为了调查本小区业主对物业服务满意度的真实情况,对本小区业主进行了调查,调查中问了两个问题1:你的手机尾号是不是奇数?问题2:你是否满意物业的服务?调查者设计了一个随机化装置,其中装有大小、形状和质量完全相同的白球和红球,每个被调查者随机从装置中摸到红球和白球的可能性相同,其中摸到白球的业主回答第一个问题,摸到红球的业主回答第二个问题,回答的人往一个盒子中放一个小石子,回答的人什么都不要做由于问题的答案只有,而且回答的是哪个问题别人并不知道,因此被调查者可以毫无顾虑地给出符合实际情况的答案.已知某小区80名业主参加了问卷,且有47名业主回答了,由此估计本小区对物业服务满意的百分比大约为(

A.85%B.75%C.63.5%D.67.5%

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,点在椭圆上,点在圆上,且圆上的所有点均在椭圆外,若的最小值为,且椭圆的长轴长恰与圆的直径长相等,则下列说法正确的是(

A.椭圆的焦距为B.椭圆的短轴长为

C.的最小值为D.过点的圆的切线斜率为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,其中.

(Ⅰ)写出直线的普通方程和曲线的直角坐标方程;

(Ⅱ)在平面直角坐标系中,设直线与曲线相交于两点.若点恰为线段的三等分点,求的值.

查看答案和解析>>

同步练习册答案