精英家教网 > 高中数学 > 题目详情

如图椭圆 (a>b>0)的上顶点为A,左顶点为B, F为右焦点, 过F作平行与AB的直线交椭圆于C、D两点. 作平行四边形OCED, E恰在椭圆上.

(1)求椭圆的离心率;

    (2)若平行四边形OCED的面积为, 求椭圆方程.

)(1)e =. (2)故椭圆方程为


解析:

(1) ∵焦点为F(c, 0), AB斜率为, 故CD方程为y=(x-c). 于椭圆联立后消去y得2x2-2cxb2=0. ∵CD的中点为G(), 点E(c, -)在椭圆上, ∴将E(c, -)代入椭圆方程并整理得2c2=a2, ∴e =.

(2)由(Ⅰ)知CD的方程为y=(x-c),  b=c, a=c.

与椭圆联立消去y得2x2-2cx-c2=0.

 ∵平行四边形OCED的面积为

S=c|yC-yD|=c=c,

∴c=, a=2, b=. 故椭圆方程为 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(08年宝山区模拟理 ) (18分)已知椭圆C:(a>b>0)的一个焦点到长轴的两个端点的距离分别为

(1)求椭圆的方程;

(2)设过定点M(0,2)的直线l与椭圆C交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.

(3)如图,过原点O任意作两条互相垂直的直线与椭圆(a>b>0)相交于P,S,R,Q四点,设原点O到四边形PQSR一边的距离为d,试求d=1时a,b满足的条件。

 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,F是椭圆(a>b>0)的一个焦点,A,B是椭圆的两个顶点,椭圆的离心率为.点C在x轴上,BC⊥BF,B,C,F三点确定的圆M恰好与直线l1相切.

   (Ⅰ)求椭圆的方程:

   (Ⅱ)过点A的直线l2与圆M交于PQ两点,且,求直线l2的方程.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建高二第二次月考文科数学试卷(解析版) 题型:选择题

如图,F1,F2分别是椭圆 (a>0,b>0)的两个焦点,A和B是以O为圆心,以|OF1|为半径的圆与该左半椭圆的两个交点,且△F2AB是等边三角形,则椭圆的离心率为(    )

A.          B.          C.         D.-1

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省福州市高三质量检测理科数学 题型:解答题

.(本小题满分13分)

如图,椭圆 (a>b>0)的上、下顶点分别为A、B,已知点B在直线l:y=-1上,且椭圆的离心率e =.(Ⅰ)求椭圆的标准方程;

(Ⅱ)设P是椭圆上异于A、B的任意一点,PQ⊥y轴,Q为垂足,M为线段PQ中点,直线AM交直线l于点C,N为线段BC的中点,求证:OM⊥MN

 

 

 

查看答案和解析>>

同步练习册答案