精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=$\frac{1}{2}$x2-2alnx+(a-2)x,对任意x1,x2∈(0,+∞),且当x1>x2时,f(x1)-ax1>f(x2)-ax2恒成立,则实数a的取值范围是(  )
A.a>-$\frac{1}{2}$B.a<-$\frac{1}{2}$C.a≥-$\frac{1}{2}$D.a≤-$\frac{1}{2}$

分析 构造辅助函数g(x)=f(x)-ax,只要使函数g(x)在定义域内为增函数即可,利用其导函数恒大于等于0可求解a的取值范围.

解答 解:当x1>x2时,f(x1)-ax1>f(x2)-ax2恒成立.
令g(x)=f(x)-ax,即有g(x)在(0,+∞)为增函数.
又函数g(x)=$\frac{1}{2}$x2-2alnx-2x.
考查函数g′(x)=x-$\frac{2a}{x}$-2=$\frac{{x}^{2}-2x-2a}{x}$=$\frac{(x-1)^{2}-1-2a}{x}$,
要使g′(x)≥0在(0,+∞)上恒成立,
只要-1-2a≥0,即a≤-$\frac{1}{2}$,
故选D.

点评 本题考查了利用导数研究函数单调性,考查了数学转化思想方法,训练了利用构造函数法解决不等式恒成立问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知tanα=2,求sin2α-sinαcosα+2,$\frac{si{n}^{3}α-cosα}{5sinα+3cosα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知图1是某学生的15次数学考试成绩的茎叶图,第1次到第15次的考试成绩依次记为A1,A2,…,A15,图2是统计茎叶图中成绩在一定范围内考试范围内考试次数的一个程序框图,则输出的n的值是12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=ax3+lg(x+$\sqrt{{x}^{2}+1}$)+1,若f(-1)=m,则f(1)用含有m的式子表示为2-m.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知a<b<0,则下列不等式正确的是(  )
A.a2<b2B.$\frac{1}{a}<\frac{1}{b}$C.2a<2bD.ab<b2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.有一道解三角形的题目,因纸张破损有一个条件模糊不清,具体如下:“在△ABC中,已知$a=\sqrt{3}$,$B=\frac{π}{4}$,$A=\frac{π}{6}$(或$C=\frac{7π}{12}$),求b.”若破损处的条件为三角形的一个内角的大小,且答案提示$b=\sqrt{6}$.试在横线上将条件补充完整.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若集合A={1,3,x},B={1,x2},且A∪B={1,3,x},则x=0或$±\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知tan(π-α)=-2,则$\frac{1}{{{{sin}^2}α-2{{cos}^2}α}}$=$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设x∈R,则“l<x<2”是“l<x<3”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案