精英家教网 > 高中数学 > 题目详情

【题目】设双曲线C (a>0,b>0)的左、右焦点分别为F1F2,|F1F2|=2c,过F2x轴的垂线与双曲线在第一象限的交点为A,已知Q,|F2Q|>|F2A|,点P是双曲线C右支上的动点,且|PF1|+|AQ|>|F1F2|恒成立,则双曲线的离心率的取值范围是(  )

A. B.

C. D.

【答案】B

【解析】

根据点坐标得到线段|F2Q||F2A|,从而得,进而有|AQ|= ,结合|AF1|+|AQ|>|F1F2|,即可求得离心率的范围.

AF2垂直于x轴,则|F2A|为双曲线的通径的一半,

|F2A|=A的坐标为

|AF1|=.

Q,∴|F2Q|=.

又|F2Q|>|F2A|

故有|AQ|=

A在第一象限上即在右支上,则有|AF1|+|AQ|>|F1F2|,

×2c>3c7a>6ce.∵e>1,∴1<e.

答案:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】分别为双曲线的左、右顶点,双曲线的实轴长为,焦点到渐近线的距离为

(1)求双曲线的方程;

(2)已知直线与双曲线的右支交于两点,且在双曲线的右支上存在点,使,求的值及点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设圆的圆心在轴上,并且过两点.

(1)求圆的方程;

(2)设直线与圆交于两点,那么以为直径的圆能否经过原点,若能,请求出直线的方程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,,直线与直线相交于点,直线与直线的斜率分别记为,且

(1)求点的轨迹的方程;

(2)过定点作直线与曲线交于两点, 的面积是否存在最大值?若存在,求出面积的最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣
(1)若函数f(x)在定义域内不单调,求实数a的取值范围;
(2)若函数f(x)在区间(0,1]内单调递增,求实数a的取值范围;
(3)若x1、x2∈R+ , 且x1≤x2 , 求证:(lnx1﹣lnx2)(x1+2x2)≤3(x1﹣x2).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】泰兴机械厂生产一种木材旋切机械,已知生产总利润c元与生产量x台之间的关系式为c(x)=-2x2+7 000x+600.

(1)求产量为1 000台的总利润与平均利润;

(2)求产量由1 000台提高到1 500台时,总利润的平均改变量;

(3)c′(1 000)c′(1 500),并说明它们的实际意义.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=1,a3=9,且an=an1+λn﹣1(n≥2).
( I)求λ的值及数列{an}的通项公式;
( II)设 ,且数列{bn}的前n项和为Sn , 求S2n

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数f(x)= ,称为狄利克雷函数,则关于函数f(x)有以下四个命题: ①f(f(x))=1;
②函数f(x)是偶函数;
③任意一个非零有理数T,f(x+T)=f(x)对任意x∈R恒成立;
④存在三个点A(x1 , f(x1)),B(x2 , f(x2)),C(x3 , f(x3)),使得△ABC为等边三角形.
其中真命题的个数是(
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=aln(x2+1)+bx存在两个极值点x1 , x2
(1)求证:|x1+x2|>2;
(2)若实数λ满足等式f(x1)+f(x2)+a+λb=0,试求λ的取值范围.

查看答案和解析>>

同步练习册答案