精英家教网 > 高中数学 > 题目详情

已知为常数,且,函数 
是自然对数的底数).
(1)求实数的值;
(2)求函数的单调区间;
(3)当时,是否同时存在实数),使得对每一个,直线与曲线都有公共点?若存在,求出最小的实数和最大的实数;若不存在,说明理由.

(1);(2)当时,的单调增区间为,单调减区间为,当时,的单调增区间为,单调减区间为;(3) 当时,存在实数,使得对每一个,直线与曲线都有公共点,可得.

解析试题分析:(1) 由可解得的值;(2)对函数求导可得,对进行讨论,解分别可得单调递增与递减区间;(3)当时,,求出导数判断的变化情况,得在区间内值域为,假设存在题目中要求的点,那么每一个,直线与曲线都没有公共点.
解: (1)由,得;             2分
(2)由(Ⅰ),.定义域为.      .3分
从而,                      ..4分
因为,所以
时,由,由;5分
时,由,由;6分
因而, 当时,的单调增区间为,单调减区间为, ..7分
时,的单调增区间为,单调减区间为.     .8分
(3)当时,.令,则
在区间内变化时,的变化情况如下表:






练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

对于三次函数
定义:(1)设是函数的导数的导数,若方程有实数解,则称点为函数的“拐点”;
定义:(2)设为常数,若定义在上的函数对于定义域内的一切实数,都有成立,则函数的图象关于点对称。
己知,请回答下列问题:
(1)求函数的“拐点”的坐标
(2)检验函数的图象是否关于“拐点”对称,对于任意的三次函数写出一个有关“拐点”的结论(不必证明)
(3)写出一个三次函数,使得它的“拐点”是(不要过程)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,( 为常数,为自然对数的底).
(1)当时,求
(2)若时取得极小值,试确定的取值范围;
(3)在(2)的条件下,设由的极大值构成的函数为,将换元为,试判断曲线是否能与直线为确定的常数)相切,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)= (a∈R).
(1)求f(x)的极值;
(2)若函数f(x)的图象与函数g(x)=1的图象在区间(0,e2]上有公共点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)求f(x)的单调区间和极值;
(2)关于的方程f(x)=a在区间上有三个根,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

修建一个面积为平方米的矩形场地的围墙,要求在前面墙的正中间留一个宽度为2米的出入口,后面墙长度不超过20米,已知后面墙的造价为每米45元,其它墙的造价为每米180元,设后面墙长度为x米,修建此矩形场地围墙的总费用为元.
(1)求的表达式;
(2)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)若时有极值,求实数的值和的极大值;
(2)若在定义域上是增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)
设函数
,求曲线处的切线方程;
讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求的单调区间;
(2)当时,若存在, 使得成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案