精英家教网 > 高中数学 > 题目详情
9.cos300°+sin210°的值为(  )
A.1B.$\frac{1}{2}$C.0D.-1

分析 由条件利用诱导公式进行化简所给的式子,可得结果.

解答 解:cos300°+sin210°=cos(360°-60°)+sin(180°+30°)=cos60°-sin30°=$\frac{1}{2}$-$\frac{1}{2}$=0,
故选:C.

点评 本题主要考查利用诱导公式进行化简求值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.在等比数列{an}中,a4•a6=5,则a2•a3•a7•a8=25.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.小明和小刚正在做掷骰子游戏,两人各掷一枚骰子,当两枚骰子点数之和为奇数时,小刚得1分,否则小明得1分.这个游戏公平吗?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,直三棱柱(侧棱垂直于底面)ABC-A1B1C1中,$CA=CB=\frac{1}{2}C{C_1}$,点D棱AA1的中点,且C1D⊥BD.
(1)求证:CA⊥CB;
(2)若CA=1,求四棱锥C1-A1B1BD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知向量$\overrightarrow m=(a,b,0),\overrightarrow n=(c,d,1)$其中a2+b2=c2+d2=1,现有以下命题:
(1)向量$\overrightarrow n$与z轴正方向的夹角恒为定值(即与c,d无关 );
(2)$\overrightarrow m•\overrightarrow n$的最大值为$\sqrt{2}$;
(3)$\left?{\overrightarrow m,\overrightarrow n}\right>$($\overrightarrow m•\overrightarrow n$的夹角)的最大值为$\frac{3π}{4}$;
(4)若定义$\overrightarrow u×\overrightarrow v=|{\overrightarrow u}|•|{\overrightarrow v}|sin\left?{\overrightarrow u,\overrightarrow v}\right>$,则$|{\overrightarrow m×\overrightarrow n}|$的最大值为$\sqrt{2}$.
其中正确的命题有(1)(3)(4).(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知$\overrightarrow a,\overrightarrow b$为非零向量,满足$({\overrightarrow a-2\overrightarrow b})⊥\overrightarrow a;({\overrightarrow b-2\overrightarrow a})⊥\overrightarrow b$,则$\overrightarrow a$与$\overrightarrow b$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若向量$\overrightarrow a,\overrightarrow b满足|{\overrightarrow a}|=1,|{\overrightarrow b}|≤1,且以向量\overrightarrow a,\overrightarrow b为邻边的平行四边形的面积是\frac{1}{2}$,则$\overrightarrow a与\overrightarrow b的夹角θ的取值范围是$[30°,150°]或[$\frac{π}{6}$,$\frac{5π}{6}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知{an}为公差不为零的等差数列,首项a1=a,{an}的部分项${a_{k_1}}$、${a_{k_2}}$、…、${a_{k_n}}$恰为等比数列,且k1=1,k2=5,k3=17.
(1)求数列{an}的通项公式an(用a表示);
(2)设数列{kn}的前n项和为Sn,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若函数f(x)=2x2-lnx在其定义域内的一个子区间[k-1,k+1]内不是单调函数,则实数k的取值范围是(  )
A.[1,2)B.(1,2)C.$[{1,\frac{3}{2}})$D.$({1,\frac{3}{2}})$

查看答案和解析>>

同步练习册答案