精英家教网 > 高中数学 > 题目详情

【题目】设等差数列{an}的前n项和为Sn , 若Sm1=﹣2,Sm=0,Sm+1=3,其中m≥2,则nSn的最小值为(
A.﹣3
B.﹣5
C.﹣6
D.﹣9

【答案】D
【解析】解:由Sm﹣1=﹣2,Sm=0,Sm+1=3,得am=2,am+1=3,所以d=1,因为Sm=0,故ma1+ d=0,故a1=﹣ , 因为am+am+1=5,
故am+am+1=2a1+(2m﹣1)d=﹣(m﹣1)+2m﹣1=5,解得m=5.
所以 =﹣2,
nSn=n(﹣2n+ )= n3 n2
设f(n)= n3 n2 , 则 ,由f′(n)=0,得n= 或n=0,
由n∈N* , 得当n=3时,nSn取最小值 =﹣9.
故选:D.
【考点精析】认真审题,首先需要了解等差数列的前n项和公式(前n项和公式:).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos(2x﹣ )+2cos2x,将函数y=f(x)的图象向右平移 个单位,得到函数y=g(x)的图象,则函数y=g(x)图象的一个对称中心是(
A.(﹣ ,1)
B.(﹣ ,1)
C.( ,1)
D.( ,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种商品计划提价,现有四种方案,方案(Ⅰ)先提价m%,再提价n%;方案(Ⅱ)先提价n%,再提价m%;方案(Ⅲ)分两次提价,每次提价( )%;方案(Ⅳ)一次性提价(m+n)%,已知m>n>0,那么四种提价方案中,提价最多的是(
A.Ⅰ
B.Ⅱ
C.Ⅲ
D.Ⅳ

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a2﹣a﹣2b﹣2c=0且a+2b﹣2c+3=0.则△ABC中最大角的度数是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设不等式|x+1|+|x﹣1|≤2的解集为M.
(Ⅰ)求集合M;
(Ⅱ)若x∈M,|y|≤ ,|z|≤ ,求证:|x+2y﹣3z|≤

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解人们对于国家新颁布的“生育二孩放开”政策的热度,现在对某市年龄在35岁的人调查,随机选取年龄在35岁的100人进行调查,得到他们的情况为:在55名男性中,支持生二孩的有40人,不支持生二孩的有15人;在45名女性中,支持生二孩的有20人,不支持的有25人.
(Ⅰ)完成下面2×2列联表,并判断有多大的把握认为“支持生二孩与性别有关”?

支持生二孩

不支持生二孩

合计

男性

女性

合计

附:K2= ,其中n=a+b+c+d

P(K2≥k0

0.150

0.100

0.050

0.010

0.005

0.001

k0

2.072

2.706

3.841

6.635

7.879

10.828

(Ⅱ)在被调查的人员中,按分层抽样的方法从支持生二孩的人中抽取6人,再用简单随机抽样的方法从这6人中随机抽取2人,求这2人中恰好有1名男性的概率;
(Ⅲ)以上述样本数据估计总体,从年龄在35岁人中随机抽取3人,记这3人中支持生二孩且为男性的人数为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,已知点D,E分别在边AB,BC上,且AB=3AD,BC=2BE.
(Ⅰ)用向量 表示
(Ⅱ)设AB=6,AC=4,A=60°,求线段DE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题为真命题的是(
A.若 x>y>0,则 ln x+ln y>0
B.“φ= ”是“函数 y=sin(2x+φ) 为偶函数”的充要条件
C.?x0∈(﹣∞,0),使 3x0<4x0成立
D.已知两个平面α,β,若两条异面直线m,n满足m?α,n?β且 m∥β,n∥α,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数 x∈[1,10],执行如图所示的程序框图,则输出的x不大于63的概率为(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案