精英家教网 > 高中数学 > 题目详情
如图,已知函数y=sinx,x∈[-π,π]与x轴围成的区域记为M(图中阴影部分),若随机向圆O:x2+y22内投入一米粒,则该米粒落在区域M内的概率是( )

A.
B.
C.
D.
【答案】分析:先计算阴影部分面积、圆O:x2+y22的面积,再以面积为测度,可得该米粒落在区域M内的概率.
解答:解:先计算阴影部分面积S==2(-cosx)=4,圆O:x2+y22的面积为π2
再以面积为测度,可得该米粒落在区域M内的概率是
故选A.
点评:本题考查几何概型,考查利用定积分计算面积,解题的关键是确定阴影的面积.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•江西)如图,已知正四棱锥S-ABCD所有棱长都为1,点E是侧棱SC上一动点,过点E垂直于SC的截面将正四棱锥分成上、下两部分.记SE=x(0<x<1),截面下面部分的体积为V(x),则函数y=V(x)的图象大致为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•广州一模)如图,已知曲线C1:y=x2与曲线C2:y=-x2+2ax(a>1)交于点O,A,直线x=t(0<t≤1)与曲线C1,C2分别相交于点D,B,连结OD,DA,AB,OB.
(1)写出曲边四边形ABOD(阴影部分)的面积S与t的函数关系式S=f(t);
(2)求函数S=f(t)在区间(0,1]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知二次函数f(x)=ax2+bx+c,直线l1:x=2,直线l2:y=3tx(其中-1<t<1,t为常数);若直线l2与函数f(x)的图象以及直线l1,l2与函数f(x)以及的图象所围成的封闭图形如阴影所示.
(I)求y=f(x);
(2)求阴影面积s关于t的函数y=s(t)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知矩形ABCD的一边AB在x轴上,另两个顶点C,D落在抛物线弧y=-x2+2x(0<x<2)上.设点C的横坐标为x.
(1)将矩形ABCD的面积S(x)表示为x的函数;
(2)求S(x)取最大值时对应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知二次函数f(x)=ax2+bx+c,直线l1:x=2,直线l2:y=3tx(其中-1<t<1,t为数);.若直线l2与函数f(x)的图象以及直线l1,l2与函数f(x)的图象所围成的封闭图形如阴影所示.
(1)求y=f(x);  
(2)求阴影面积s关于t的函数y=s(t)的解析式;(3)若过点A(1,m),m≠4可作曲线y=s(t),t∈R的三条切线,求实数m的取值范围.

查看答案和解析>>

同步练习册答案