精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)(x∈R)满足f(-x)=8-f(4+x),函数g(x)=$\frac{4x+3}{x-2}$,若函数f(x)与g(x)的图象共有168个交点,记作Pi(xi,yi)(i=1,2,…,168),则(x1+y1)+(x2+y2)+…+(x168+y168)的值为(  )
A.2018B.2017C.2016D.1008

分析 根据题意求解f(x),g(x)的对称中心点坐标的关系,即两个图象的交点的关系,从而求解.

解答 解:函数f(x)(x∈R)满足f(-x)=8-f(4+x),
可得:f(-x)+f(4+x)=8,即函数f(x)关于点(2,4)对称,
函数g(x)=$\frac{4x+3}{x-2}$=$\frac{4(x-2)+11}{x-2}$=4+$\frac{11}{x-2}$可知图象关于(2,4)对称;
∴函数f(x)与g(x)的图象共有168个交点即在(2,4)两边各有84个交点.
而每个对称点都有:x1+x2=4,y1+y2=8,
∵有168个交点,即有84组.
故得:(x1+y1)+(x2+y2)+…+(x168+y168)=(4+8)×84=1008.
故选D.

点评 本题考查了函数的对称问题,寻求两个图象的交点的关系式解题的关键.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知m,n,s,t∈R+,m+n=2,$\frac{m}{s}$+$\frac{n}{t}$=9,其中m,n是常数,当s+t取最小值$\frac{4}{9}$时,m,n对应的点(m,n)是椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1的一条弦的中点,则此弦所在的直线方程为x+2y-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知$\overrightarrow{a}$=(2,-1),$\overrightarrow{b}$=(x,3),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则|$\overrightarrow{b}$|=(  )
A.3B.5C.$\sqrt{5}$D.3$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在平面直角坐标系xOy中,已知任意角θ以x轴非负半轴为始边,若终边经过点P(x0,y0),且|OP|=r(r>0),定义sicosθ=$\frac{{x}_{0}+{y}_{0}}{r}$,称“sicosθ”为“正余弦函数”.对于正余弦函数y=sicosx,有同学得到如下结论:
①该函数是偶函数;
②该函数的一个对称中心是($\frac{3π}{4}$,0);
③该函数的单调递减区间是[2kπ-$\frac{3π}{4}$,2kπ+$\frac{π}{4}$],k∈Z.
④该函数的图象与直线y=$\frac{3}{2}$没有公共点;
以上结论中,所有正确的序号是②④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的两条渐近线与抛物线y2=-16x的准线交于A,B,且|AB|=6,则双曲线的离心率为(  )
A.$\frac{\sqrt{7}}{4}$B.$\frac{4}{3}$C.$\frac{5}{3}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.拉萨市某高中为了了解学校食堂的服务质量情况,对在校就餐的1400名学生按5%比例进行问卷调查,把学生对食堂的“服务满意度”与“价格满意度”都分为五个等级:1级(很不满意);2级(不满意);3级(一般);4级(满意);5级(很满意),其统计结果如表所示(服务满意度为x,价格满意度为y).

 
y
人数
x
价格满意度
12345




111220
221341
337884
414641
501231
(I)作出“价格满意度”的频率分布直方图;
(II)为改进食堂服务质量,现从x<3且y<3的五人中抽取两人征求意见,求至少有一人的“服务满意度”为1的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.i是虚数单位,若z(2+i)=1+3i,则复数z=(  )
A.$\frac{-1+5i}{5}$B.$\frac{-1+7i}{5}$C.1+iD.$\frac{-1+5i}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.我们把各位数字之和等于6的三位数称为“吉祥数”,例如123就是一个“吉祥数”,则这样的“吉祥数”一共有(  )
A.28个B.21个C.35个D.56个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=$\frac{{{ln|x}|}}{{{e^x}-{e^{-x}}}}$的图象大致是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案