精英家教网 > 高中数学 > 题目详情
(本题满分14分)已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,PA=AC=,N为AB上一点,AB=4AN, M,S分别为PB,BC的中点.
(Ⅰ)证明:CM⊥SN;
(Ⅱ)求SN与平面CMN所成角的大小.
(1)见解析;(2)45°.
第一问中,利用建立空间直角坐标系,结合数量积为零来判定线线的垂直关系
第二问中,在第一问的基础上,分别求解得到平面MCN的法向量,然后得到直线SN的方向向量,利用法向量与方向向量来求解线面角的大小。
证明:设PA=1,以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立空间直角坐标系如图。

则P(0,0,1),C(0,1,0),B(2,0,0),M(1,0,),N(,0,0),S(1,,0).……4分
(Ⅰ),
因为,所以CM⊥SN ……6分
(Ⅱ),设a=(x,y,z)为平面CMN的一个法向量,
        ……9分
因为所以SN与平面CMN所成角为45°。…14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)在四棱锥中,平面,底面为矩形,.

(Ⅰ)当时,求证:
(Ⅱ)若边上有且只有一个点,使得,求此时二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(满分12分)长方体中,分别是中点。
(1)求证:;                   
(2)求二面角的正切值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
中,若,则.在四面体中,若两两垂直,底面,垂足为,则类似的结论是什么?并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

三个平面,三条直线a,b,c共点,知:。求证: 两两互相垂直.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两个不同的平面,是两条不同的直线,给出下列4个命题,其中正确命题是(    )
A.若,则
B.若,则
C.若,则
D.若在平面内的射影互相垂直,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

表示三条不同的直线,表示平面,给出下列命题:
①若,则;②若,则
③若,则;④若,则.
正确的是(   )
A.①②B.②③C.①④D.③④

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

本题满分14分)
四棱锥P-ABCD中,底面ABCD为直角梯形,,AD∥BC, AB="BC=2," AD="4,"
PA⊥底面ABCD,PD与底面ABCD成角,E是PD的中点.
(1)点H在AC上且EH⊥AC,求的坐标;
(2)求AE与平面PCD所成角的余弦值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为两条不同的直线,为两个不同的平面,则下列命题是真命题的是(    )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案