精英家教网 > 高中数学 > 题目详情

【题目】如图,已知直三棱柱E是棱上动点,FAB中点,

1)求证:平面

2)当是棱中点时,求与平面所成的角;

3)当时,求二面角的大小.

【答案】1)证明见解析;(2;(3.

【解析】

1)推导出,由此能证明平面

2)以为原点,轴,轴,轴,建立空间直角坐标系,利用向量法能求出与平面所成的角.

3)求出平面的法向量和平面的法向量,利用向量法能求出二面角的大小.

1直三棱柱

中点,

平面

2)解:以为原点,轴,轴,轴,建立空间直角坐标系,

设平面的法向量

,取,得

与平面所成的角为

与平面所成的角为

3)解:当时,

设平面的法向量

,取,则

平面的法向量

设二面角的大小为

二面角的大小为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,在三棱柱中,平面是线段上的动点,是线段上的中点.

(Ⅰ)证明:

(Ⅱ)若,且直线所成角的余弦值为,试指出点在线段上的位置,并求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两直线l1axby40l2(a1)xyb0.求分别满足下列条件的ab的值.

(1)直线l1过点(3,-1),并且直线l1l2垂直;

(2)直线l1与直线l2平行,并且坐标原点到l1l2的距离相等.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面,点为棱的中点.

(1)证明:

(2)证明:面

(3)求直线与面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=2x33ax2+1

1)若a=﹣1,求函数fx)的单调区间;

2)若函数fx)有且只有2个不同的零点,求实数a的值;

3)若函数y|fx|[01]上的最小值是0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是抛物线上一点,的焦点.

(1)若上的两点,证明:依次成等比数列.

(2)过作两条互相垂直的直线与的另一个交点分别交于(的上方),求向量轴正方向上的投影的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分形几何学是一门以不规则几何形态为研究对象的几何学.分形的外表结构极为复杂,但其内部却是有规律可寻的.一个数学意义上分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统.下面我们用分形的方法来得到一系列图形,如图1,线段的长度为a,在线段上取两个点,使得,以为一边在线段的上方做一个正六边形,然后去掉线段,得到图2中的图形;对图2中的最上方的线段作相同的操作,得到图3中的图形;依此类推,我们就得到了以下一系列图形:

记第个图形(图1为第1个图形)中的所有线段长的和为,现给出有关数列的四个命题:

①数列是等比数列;

②数列是递增数列;

③存在最小的正数,使得对任意的正整数 ,都有

④存在最大的正数,使得对任意的正整数,都有

其中真命题的序号是________________(请写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为整数,若对任意的,不等式恒成立,则的最大值是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )

A. 1盏 B. 3盏 C. 5盏 D. 9盏

查看答案和解析>>

同步练习册答案