【题目】设,函数.
(1)若,求证:函数为奇函数;
(2)若,判断并证明函数的单调性;
(3)若,函数在区间上的取值范围是,求的范围.
【答案】(1)见解析;(2)函数为上的单调递增,证明见解析;(3)当时,;当时,.
【解析】
(1)当时,函数,根据函数奇偶性得,进而得出结论.
(2)当时,函数的定义域为,通过单调性的定义法的五步①设元②作差③变形④定号⑤下结论.
(3)因为,,所以,分,两种情况讨论函数在区间上的取值范围是,进而得出结论.
解:(1)当时,函数,
因为,所以,即定义域为
从而对任意的,,
所以为奇函数.
(2)当时,因为,所以,
所以函数的定义域为.
结论:函数为上的单调递增函数.
证明:设对任意的,,且,
则
,
因为,所以,即,
又因为,,,
所以,
于是,即函数为上的单调递增.
(3)因为,所以,从而,
由,知,所以,
因为,所以或.
当时,由(2)知,函数为上单调递增函数.
因为函数在区间上的取值范围是
所以,即,
从而关于的方程 有两个互异实数根.
令,则,所以方程,有两个互异实数根
,从而.
当时,函数在区间,上均单调递减.
若,则,于是,这与矛盾,故舍去.
若,则,于是,即,
所以,两式相减整理得,,
又,故,从而,因为,所以.
综上可得,当时,
当时,.
科目:高中数学 来源: 题型:
【题目】抛物线的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足.过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N,则 的最大值为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为迎接2017年“双”,“双”购物狂欢节的来临,某青花瓷生产厂家计划每天生产汤碗、花瓶、茶杯这三种瓷器共个,生产一个汤碗需分钟,生产一个花瓶需分钟,生产一个茶杯需分钟,已知总生产时间不超过小时.若生产一个汤碗可获利润元,生产一个花瓶可获利润元,生产一个茶杯可获利润元.
(1)使用每天生产的汤碗个数与花瓶个数表示每天的利润(元);
(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,.现有如下两种图象变换方案:
方案1:将函数的图像上所有点的横坐标变为原来的一半,纵坐标不变,再将所得图象向左平移个单位长度;
方案2:将函数的图象向左平移个单位长度,再将所得图象上所有点的横坐标变为原来的一半,纵坐标不变.
请你从中选择一种方案,确定在此方案下所得函数的解析式,并解决如下问题:
(1)画出函数在长度为一个周期的闭区间上的图象;
(2)请你研究函数的定义域,值域,周期性,奇偶性以及单调性,并写出你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】即将开工的南昌与周边城镇的轻轨火车路线将大大缓解交通的压力,加速城镇之间的流通.根据测算,如果一列火车每次拖4节车厢,每天能来回16次;如果一列火车每次拖7节车厢,每天能来回10次,每天来回次数是每次拖挂车厢个数的一次函数.
(1)写出与的函数关系式;
(2)每节车厢一次能载客110人,试问每次应拖挂多少节车厢才能使每天营运人数最多?并求出每天最多的营运人数(注:营运人数指火车运送的人数)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,定义:表示不超过的最大整数,例如:,.
(1)若,写出实数的取值范围;
(2)若,且,求实数的取值范围;
(3)设,,若对于任意的,都有,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经调查,3个成年人中就有一个高血压,那么什么是高血压?血压多少是正常的?经国际卫生组织对大量不同年龄的人群进行血压调查,得出随年龄变化,收缩压的正常值变化情况如下表:
年龄x | 28 | 32 | 38 | 42 | 48 | 52 | 58 | 62 |
收缩压单位 | 114 | 118 | 122 | 127 | 129 | 135 | 140 | 147 |
其中:,,
请画出上表数据的散点图;
请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;的值精确到
若规定,一个人的收缩压为标准值的倍,则为血压正常人群;收缩压为标准值的倍,则为轻度高血压人群;收缩压为标准值的倍,则为中度高血压人群;收缩压为标准值的倍及以上,则为高度高血压人群一位收缩压为180mmHg的70岁的老人,属于哪类人群?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A. “f(0)”是“函数f(x)是奇函数”的充要条件
B. 若p:,,则:,
C. “若,则”的否命题是“若,则”
D. 若为假命题,则p,q均为假命题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com