精英家教网 > 高中数学 > 题目详情

已知双曲线的离心率,过的直线到原点的距离是 

(1)求双曲线的方程;

(2)已知直线交双曲线于不同的点C,D且C,D都在以B为圆心的圆上,求k的值.

 

【答案】

(1)(2)

【解析】

试题分析:(1)原点到直线AB:的距离.

故所求双曲线方程为

(2)把中消去y,整理得 .

的中点是,则

,故所求k=±

考点:双曲线方程及直线与双曲线位置关系

点评:直线与双曲线的位置关系常联立方程利用韦达定理

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线方程为(  )
A、
x2
4
-
y2
12
=1
B、
x2
12
-
y2
4
=1
C、
x2
10
-
y2
6
=1
D、
x2
6
-
y2
10
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的离心率等于2,且与椭圆
x2
25
+
y2
9
=1有相同的焦点,求此双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的离心率等于2,且与椭圆
x2
25
+
y2
9
=1
有相同的焦点,
(1)求椭圆的离心率;   
(2)求此双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的离心率为2,F1、F2是左右焦点,P为双曲线上一点,且∠F1PF2=60°,S△PF1F2=12
3
.该双曲线的标准方程为
x2
4
-
y2
12
=1
x2
4
-
y2
12
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线方程为
x2
4
-
y2
12
=1
x2
4
-
y2
12
=1

查看答案和解析>>

同步练习册答案