精英家教网 > 高中数学 > 题目详情
已知函数在区间[1,2]上的最大值为A,最小值为B,则A-B=( )
A.
B.
C.1
D.-1
【答案】分析:先根据反比例函数的性质可知函数在区间[1,2]上单调递减函数,将区间端点代入求出最值,即可求出所求.
解答:解:函数在区间[1,2]上单调递减函数
∴当x=1时,f(x)取最大值A=1,当x=2时,f(x)取最小值B=
∴A-B=1-=
故选A.
点评:本题主要考查了反比例函数的单调性,以及函数的最值及其几何意义的基础知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

a为实常数,已知函数在区间[1,2]上是增函数,且在区间[0,1]上是减函数。

(Ⅰ)求常数的值;

(Ⅱ)设点P为函数图象上任意一点,求点P到直线距离的最小值;

(Ⅲ)若当时,恒成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:2010-2011年浙江省瑞安中学高二下学期期中考试理科数学 题型:填空题

.已知函数在区间[1,2]上不是单调函数,则错误!不能通过编辑域代码创建对象。的范围为         

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省杭州高级中学高三第一次月考数学试卷(理科)(解析版) 题型:解答题

已知函数在区间[-1,1]上单调递减,在区间[1,2]上单调递增,
(1)求实数a的值;
(2)若关于x的方程f(2x)=m有三个不同实数解,求实数m的取值范围;
(3)若函数y=log2[f(x)+p]的图象与坐标轴无交点,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省高三第一次月考理科数学卷 题型:填空题

已知函数在区间[-1,1]上至少存在一个实数c使f(c)>0,则实数p的范围     

 

查看答案和解析>>

科目:高中数学 来源:2010-2011年浙江省高二下学期期中考试理科数学 题型:填空题

.已知函数在区间[1,2]上不是单调函数,则错误!不能通过编辑域代码创建对象。的范围为          

 

查看答案和解析>>

同步练习册答案