精英家教网 > 高中数学 > 题目详情
13.已知集合U={0,1,2,3},A={0,1,2},B={2,3},则(∁UA)∩B(  )
A.{1,3}B.{2,3}C.{3}D.{0,1,2,3}

分析 根据题意,先求出A的补集∁UA,再由交集的意义,计算可得(∁UA)∩B,即可得答案.

解答 解:根据题意,集合U={0,1,2,3},A={0,1,2},则∁UA={3},
又由B={2,3},
则(∁UA)∩B={3};
故选:C.

点评 本题考查集合混合运算,注意运算的顺序,其次要理解集合交、并、补的含义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知f(x)=$\left\{{\begin{array}{l}{x+1\;,\;\;\;x>0}\\{\;2\;\;\;,\;\;\;\;\;x=0}\\{\;0\;\;\;,\;\;\;\;\;x<0}\end{array}}$,则f{f[f(-1)]}=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图,正方体ABCD-A1B1C1D1中,M、N分别为棱C1D1、C1C的中点,有以下四个结论:
①直线AM与CC1是相交直线;
②直线AM与BN是平行直线;
③直线BN与MB1是异面直线;
④直线AM与DD1是异面直线.
其中正确的结论为③④(注:把你认为正确的结论的序号都填上).
⑤图中正方体ABCD-A1B1C1D1的棱所在直线中与直线AB是异面直线的有4条.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.证明棱柱的侧面是平行四边形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在极坐标系中,过点M($\sqrt{2}$,$\frac{π}{4}$)的直线l与极轴的夹角α=$\frac{π}{3}$,l的极坐标方程为$\sqrt{3}$ρcosθ-ρsinθ-$\sqrt{3}$+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.一个等腰直角三角形在一个平面内的正投影可能是①②③④.(把你认为正确的选项的序号填在横线上)
①等腰直角三角形;
②直角非等腰三角形;
③钝角三角形;
④锐角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.给出下列四个命题:
(1)函数y=ax(a>0,a≠1)与函数y=logaax(a>0,a≠1)的定义域相同;
(2)函数y=x3与y=3x的值域相同;
(3)函数y=ax(a>0,a≠1)与函数y=logax(a>0,a≠1)互为反函数;
(4)函数f(x)=$\sqrt{5+4x-{x}^{2}}$的单调递增区间为(-∞,2].
其中正确命题的序号是(把你认为正确的命题序号都填上)(1)(3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,三个内角A,B,C所对的边分别是a,b,c,若b2=a2+ac+c2,则角B=120°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知锐角α,β,γ满足sinα-sinβ+sinγ=0,cosα-cosβ-cosγ=0,则α-β=-$\frac{π}{3}$.

查看答案和解析>>

同步练习册答案