【题目】如图,在四棱锥中,四边形是直角梯形, , , 底面, , , 是的中点.
(1)求证:平面平面;
(2)若二面角的余弦值为,求直线与平面所成角的正弦值.
科目:高中数学 来源: 题型:
【题目】已知抛物线上一点,F为焦点,面积为1.
(1)求抛物线C的方程;
(2)过点P引圆的两条切线PA、PB,切线PA、PB与抛物线C的另一个交点分别为A、B,求直线AB斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在国家“大众创业,万众创新”战略下,某企业决定加大对某种产品的研发投入.为了对新研发的产品进行合理定价,将该产品按事先拟定的价格试销,得到一组检测数据如表所示:
试销价格(元) | ||||||
产品销量 (件) |
已知变量且有线性负相关关系,现有甲、乙、丙三位同学通过计算求得回归直线方程分别为:甲;丙,其中有且仅有一位同学的计算结果是正确的.
(1)试判断谁的计算结果正确?
(2)若由线性回归方程得到的估计数据与检测数据的误差不超过,则称该检测数据是“理想数据”,现从检测数据中随机抽取个,求“理想数据”的个数的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,四边形是直角梯形, , , 底面, , , 是的中点.
(1)求证:平面平面;
(2)若二面角的余弦值为,求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,、、都有,满足的实数有且只有3个,给出下述四个结论:①满足题目条件的实数有且只有2个:②满足题目条件的实数有且只有2个;③在上单调递增;④的取值范围是.其中所有正确的个数是( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知F1、F2是椭圆的左、右焦点,A是椭圆上位于第一象限内的一点,点B也在椭圆上,且满足(O是坐标原点),若椭圆的离心率等于
(1)求直线AB的方程;
(2)若三角形ABF2的面积等于,求椭圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,点点关于原点对称的点为二次函数的图像经过点和点回答以下问题:
(1)用表示和的图像的顶点的纵坐标;
(2)证明:若二次函数的图像上的点满足,则向量与的数量积大于.
(3)当变化时,求中二次函数顶点纵坐标的最大值,并求出此时的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com