精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,四边形是直角梯形, 底面 的中点.

(1)求证:平面平面

(2)若二面角的余弦值为,求直线与平面所成角的正弦值.

【答案】(1)详见解析;(2).

【解析】试题分析:(1)根据平面,利用勾股定理可证明,故平面,再由面面垂直的判定定理可证得结论;(2)在点建立空间直角坐标系,利用二面角的余弦值为建立方程求得,在利用法向量求得和平面所成角的正弦值.

试题解析:(Ⅰ) 平面平面

因为,所以,所以,所以,又,所以平面.因为平面,所以平面平面

(Ⅱ)如图,

以点为原点, 分别为轴、轴、轴正方向,建立空间直角坐标系,则.设,则

,则为面法向量.

为面的法向量,则

,取,则

依题意,则.于是

设直线与平面所成角为,则

即直线与平面所成角的正弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线上一点F为焦点,面积为1.

1)求抛物线C的方程;

2)过点P引圆的两条切线PAPB,切线PAPB与抛物线C的另一个交点分别为AB,求直线AB斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且存在不同的实数x1x2x3,使得fx1=fx2=fx3),则x1x2x3的取值范围是(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在国家“大众创业,万众创新”战略下,某企业决定加大对某种产品的研发投入.为了对新研发的产品进行合理定价,将该产品按事先拟定的价格试销,得到一组检测数据如表所示:

试销价格(元)

产品销量 (件)

已知变量且有线性负相关关系,现有甲、乙、丙三位同学通过计算求得回归直线方程分别为:甲;丙,其中有且仅有一位同学的计算结果是正确的.

1)试判断谁的计算结果正确?

2)若由线性回归方程得到的估计数据与检测数据的误差不超过,则称该检测数据是“理想数据”,现从检测数据中随机抽取个,求“理想数据”的个数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,四边形是直角梯形, 底面 的中点.

(1)求证:平面平面

(2)若二面角的余弦值为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数都有,满足的实数有且只有3个,给出下述四个结论:①满足题目条件的实数有且只有2个:②满足题目条件的实数有且只有2个;③上单调递增;④的取值范围是.其中所有正确的个数是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1F2是椭圆的左、右焦点,A是椭圆上位于第一象限内的一点,点B也在椭圆上,且满足O是坐标原点),若椭圆的离心率等于

(1)求直线AB的方程;

(2)若三角形ABF2的面积等于,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方形的边长为2, 的中点,以点为圆心, 长为半径作圆,点是该圆上的任一点,则的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点点关于原点对称的点为二次函数的图像经过点和点回答以下问题:

1)用表示的图像的顶点的纵坐标;

2)证明:若二次函数的图像上的点满足,则向量的数量积大于.

3)当变化时,求中二次函数顶点纵坐标的最大值,并求出此时的值.

查看答案和解析>>

同步练习册答案