精英家教网 > 高中数学 > 题目详情
1.将四封不同的信装进写好地址的四个信封,则恰好只有一封信装错信封的概率是0;恰好有两封信装错信封的概率是$\frac{1}{4}$;(结果用最简分数表示).

分析 将四封不同的信装进写好地址的四个信封,基本事件总数n=${A}_{4}^{4}$,恰好只有一封信装错信封是不可能事件,恰好有两封信装错信封,选出两个装对的信封有${C}_{4}^{2}$种可能,剩下两封不对,有1种可能.由此利用等可能事件概率公式能求出结果.

解答 解:将四封不同的信装进写好地址的四个信封,
基本事件总数n=${A}_{4}^{4}$=24,
恰好只有一封信装错信封是不可能事件,
∴恰好只有一封信装错信封的概率是p1=0.
恰好有两封信装错信封,包含的基本事件有:
选出两个装对的信封有${C}_{4}^{2}$种可能,剩下两封不对,有1种可能.
∴m=${C}_{4}^{2}×1=6$,
∴恰好有两封信装错信封的概率是p2=$\frac{m}{n}$$\frac{{m}_{2}}{n}=\frac{6}{24}=\frac{1}{4}$.
故答案为:0,$\frac{1}{4}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意不可能事件和等可能事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=log2x(4-x).
(I)若函数f(x)在区间(m,m+1)上单调递增,求实数m的取值范围;
(Ⅱ)如果函数f(x)在区间[n,m]上的值域是[log2(n+2),log2(m+2)],试求实数m的值;
(Ⅲ)如果函数f(x)在区间(0,m]上的值域是(-∞,log2(λm2].求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x3-3x2+xlna+2,曲线y=f(x)在点(0,2)处切线与x轴交点的横坐标为-2.
(1)求a:
(2)当k<1时,曲线y=f(x)与直线y=kx-2只有一个交点,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\sqrt{2}$sin($\frac{5π}{4}$-2x)+1.
(1)求它的振幅、最小正周期、初相;
(2)画出函数y=f(x)在[-$\frac{π}{2}$,$\frac{π}{2}$]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,已知一个圆锥的底面半径为R,高为H.一个圆柱的下底面在圆锥的底面上,且圆柱的上底面为圆锥的截面,设圆柱的高为x.求:
(1)试用x表示圆柱的侧面积;
(2)x为何值时,圆柱的侧面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知△ABC三个顶点的坐标分别为A(-2,3),B(1,2),C(5,4),求:
(1)向量$\overrightarrow{BA}$与向量$\overrightarrow{BC}$的坐标;
(2)角B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.sin($\frac{π}{4}$+α)sin($\frac{π}{4}$-α)的化简结果为(  )
A.cos2αB.$\frac{1}{2}$cos2αC.sin2αD.$\frac{1}{2}$sin2α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2sinωx(0<ω<1)在[0,$\frac{π}{2}$]上的最大值为$\sqrt{2}$,当把f(x)的图象上的所有点向右平移φ(0<φ<$\frac{π}{2}$)个单位后,得到图象对应的函数g(x)的图象关于直线x=$\frac{7π}{6}$对称.
(1)求函数g(x)的解析式:
(2)在△ABC中.一个内角A,B,C所对的边分别是a,b,c.已知g(x)在y轴右侧的第一个零点为C,若c=4,求△ABC的面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.sinα+cosα=$\frac{2}{3}$,α∈(0,π),则sinα-cosα为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

同步练习册答案