精英家教网 > 高中数学 > 题目详情
5.log7[log5(log2x)]=0,则${x}^{-\frac{2}{5}}$的值为$\frac{1}{4}$.

分析 利用方程通过对数运算法则直接求解即可

解答 解:log7[log5(log2x)]=0,
可得log5(log2x)=1,
即log2x=5,
∴x=32.
${x}^{-\frac{2}{5}}$=$\frac{1}{4}$
故答案为:$\frac{1}{4}$.

点评 本题考查方程的解,对数方程的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.对于函数若f(x)=ax2+(b+1)x+b-2(a≠0),存在实数x0,使f(x0)=x0成立,则称x0为f(x)的“希望值”.
(1)当a=2,b=-2时,求f(x)的希望值;
(2)若对于任意实数b,函数f(x)恒有希望值,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.集合A={1,4,x},B={x2,1},B⊆A,则满足条件的实数x的值为(  )
A.1或0B.1,0或2C.0,2或-2D.1或2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图所示,A,B分别是单位圆与x轴、y轴正半轴的交点,点P在单位圆上,∠AOP=θ(0<θ<π),C点坐标为(-2,0),四边形OAQP是平行四边形.
(1)若$\overrightarrow{CB}∥\overrightarrow{OP}$,求$|{\overrightarrow{OQ}}|$.
(2)求$sin({2θ-\frac{π}{6}})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,a,b,c分别为角A,B,C所对的边,已知a=8,b=7,B=60°,则S△ABC=6$\sqrt{3}$或10$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,F1,F2是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,作过F1作两条相互垂直的直线l1,l2,其中直线l1交双曲线右支于点M,直线l2交双曲线左支于点N,以下说法一定正确的是④
①若|F2M|<|F2N|,则∠MF2N为锐角
②若|F2M|<|F2N|,则∠MF2N为钝角
③若|F2M|<|F1N|,则∠MF2N为锐角
④若|F2M|<|F1N|,则∠MF2N为钝角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.点(a,a-1)在圆x2+y2-2y-9=0的内部,则a的取值范围是(  )
A.-1<a<3B.1<a<3C.$\frac{1}{5}$<a<1D.-$\frac{1}{5}$<a<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.计算:
(1)${log_{2.5}}6.25+lg\frac{1}{100}+ln(e\sqrt{e})+{log_2}({log_2}16)$;
(2)已知x+x-1=4,求x2+x-2-4的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.等差数列{an}中,a2=4,a4+a7=15.
(1)求数列{an}的通项公式;
(2)设bn=2an-2+n,求{bn}的前n项和Sn
(3)求数列{$\frac{1}{{{a}_{n}}^{2}-1}$}的前n项和Tn

查看答案和解析>>

同步练习册答案