精英家教网 > 高中数学 > 题目详情
焦点坐标是(-2,0)、(2,0),且短轴长为2
6
的椭圆方程是(  )
A.
x2
9
+
y2
6
=1
B.
y2
9
+
x2
6
=1
C.
x2
10
+
y2
6
=1
D.
y2
10
+
x2
6
=1
∵椭圆的焦点坐标是(-2,0)、(2,0),且短轴长为2
6

∴c=2,b=
6

∴a2=b2+c2=6+4=10,
∴椭圆方程是:
x2
10
+
y2
6
=1,
故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)已知椭圆中心在原点,焦点在x轴上,离心率,过椭圆的右焦点且垂直于长轴的弦长为(1)求椭圆的标准方程;(2)已知直线L与椭圆相交于P、Q两点,O为原点,且OP⊥OQ。试探究点O到直线L的距离是否为定值?若是,求出这个定值;若不是,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设定点M1(0,-3),M2(0,3),动点P满足条件|PM1|+|PM2|=a+
9
a
(其中a是正常数),则点P的轨迹是(  )
A.椭圆B.线段C.椭圆或线段D.不存在

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设F1,F2分别是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦点,
(1)设椭圆C上的点(
3
3
2
)到F1,F2两点距离之和等于4,写出椭圆C的方程和焦点坐标
(2)设K是(1)中所得椭圆上的动点,求线段KF1的中点B的轨迹方程
(3)设点P是椭圆C上的任意一点,过原点的直线L与椭圆相交于M,N两点,当直线PM,PN的斜率都存在,并记为kPM,KPN试探究kPM•KPN的值是否与点P及直线L有关,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求适合下列条件的曲线的标准方程:
(1)a=3b,经过点M(3,0)的椭圆;
(2)a=2
5
,经过点N(2,-5),焦点在y轴上的双曲线.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆经过点(0,3),且长轴是短轴的3倍,则椭圆的标准方程是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(Ⅰ)求经过点(-
3
2
5
2
),且与椭圆9x2+5y2=45有共同焦点的椭圆方程;
(Ⅱ)已知椭圆以坐标轴为对称轴,且长轴长是短轴长的3倍,点P(3,0)在该椭圆上,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆中心在原点,坐标轴为对称轴,离心率是
2
2
,过点(4,0),则椭圆的方程是(  )
A.
x2
16
+
y2
8
=1
B.
x2
16
+
y2
8
=1
x2
8
+
y2
16
=1
C.
x2
16
+
y2
32
=1
D.
x2
16
+
y2
8
=1
x2
16
+
y2
32
=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过点(-3,2)且与
x2
9
+
y2
4
=1
有相同焦点的椭圆方程为______.

查看答案和解析>>

同步练习册答案