精英家教网 > 高中数学 > 题目详情
6.由两个简单几何体构成的组合几何体的三视图中,正视图和俯视图如右图所示,其中正视图中等腰三角形的高为3,俯视图中的三角形均为等腰直角三角形,半圆直径为2,则该几何体的体积为(  )
A.$\frac{π}{2}+1$B.π+1C.$\frac{π}{2}+2$D.π+2

分析 由已知中的三视力可得该几何体是一个半圆锥和三棱锥的组合体,计算出底面面积和高,代入锥体体积公式,可得答案.

解答 解:由已知中的三视力可得该几何体是一个半圆锥和三棱锥的组合体,
其底面面积S=$\frac{1}{2}$π+$\frac{1}{2}$×2×1=$\frac{1}{2}$π+1,
高h=3,
故该几何体的体积S=$\frac{1}{3}$Sh=$\frac{1}{2}$π+1,
故选:A.

点评 本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.f(x)=2$\sqrt{3}$sin(3ωx+$\frac{π}{3}$)(ω>0)
(1)若f(x+θ)是周期为2π的偶函数.求ω及θ值;
(2)在(1)的条件下求函数f(x)在[-$\frac{π}{2}$,$\frac{π}{3}$]的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设A1,A2是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的长轴的两个端点,P1,P2是垂直于x轴的直线与此椭圆的两个交点,M为直线A1P1与A2P2的交点,求证:点M的轨迹方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如果实数x,y满足条件$\left\{\begin{array}{l}{\stackrel{3x+y-3≥0}{x-1≤0}}\\{y-3≤0}\end{array}\right.$,则z=3x+5y的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}满足an+1=a${\;}_{n}^{2}$-nan+1,且a1=2.
(1)计算a2,a3,a4的值,由此猜想数列{an}的通项公式,并用数学归纳法证明;
(2)求证:2nn≤a${\;}_{n}^{n}$<3nn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在平面直角坐标系xOy中,已知△ABC顶点B(-2,0)和C(2,0),顶点A在椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1上,则$\frac{sinB+sinC}{sinA}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设a>0,且a≠1,已知函数f(x)=loga$\frac{1-bx}{x-1}$是奇函数
(Ⅰ)求实数b的值;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)当x∈(1,a-2)时,函数f(x)的值域为(1,+∞),求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=2x-5x则函数f(x)的零点所在区间可以为(  )
A.(1,2)B.(2,3)C.(3,4)D.(4,5)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图,点P从点O出发,分别按逆时针方向沿周长均为12的正三角形、正方形运动一周,O,P两点连线的距离y与点P走过的路程x的函数关系分别记为y=f(x),y=g(x),定义函数h(x)=$\left\{\begin{array}{l}f(x),f(x)≤g(x)\\ g(x),f(x)>g(x)\end{array}$考查下列结论:
①h(4)=$\sqrt{10}$;
②函数h(x)的图象关于直线x=6对称;
③函数h(x)值域为$[{0,\sqrt{13}}]$;
④函数h(x)增区间为(0,5).
其中正确的结论是①②③.(写出所有正确结论的序号)

查看答案和解析>>

同步练习册答案