精英家教网 > 高中数学 > 题目详情
12.已知集合A={x|y=$\sqrt{3-x}$},集合B={x|x≥2},A∩B=(  )
A.[0,3]B.[2,3]C.[2,+∞)D.[3,+∞)

分析 化简集合A,根据交集的定义写出A∩B即可.

解答 解:集合A={x|y=$\sqrt{3-x}$}={x|3-x≥0}={x|x≤3},
集合B={x|x≥2},
则A∩B={x|2≤x≤3}=[2,3].
故选:B.

点评 本题考查了交集的定义与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.函数$f(x)={x^2}+\frac{1}{x}$的图象在x=1处的切线方程为y=x+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=|sinx+cosx|+|sinx-cosx|是(  )
A.最小正周期为π的奇函数B.最小正周期为π的偶函数
C.最小正周期为$\frac{π}{2}$的奇函数D.最小正周期为$\frac{π}{2}$的偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数$f(x)=\left\{\begin{array}{l}x\\{x^2}\end{array}\right.\;\;\;\begin{array}{l}{({x≤a})}\\{({x>a})}\end{array}$,若存在实数b,使函数g(x)=f(x)-b有两个零点,则a的取值范围是(  )
A.a<0B.a>0且a≠1C.a<1D.a<1且a≠0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=$\left\{\begin{array}{l}{{a}^{x},x>1}\\{(6-a)x,x≤1}\end{array}\right.$,若对于任意的两个不相等实数x1,x2都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0,则实数a的取值范围是(  )
A.(1,6)B.(1,+∞)C.(3,6)D.[3,6)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=$\left\{\begin{array}{l}{ln(-x+1),x≤0}\\{{x}^{2}+2x,x>0}\end{array}\right.$,若f(x)-(m+1)x≥0,则实数m的取值范围是(  )
A.(-∞,0]B.[-1,1]C.[0,2]D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图,椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的上、下顶点分别为B2,B1,左、右顶点分别为A1,A2,若线段A2B2的垂直平分线恰好经过B1,则椭圆的离心率是$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数y=x+$\frac{a}{x}$有如下性质:当a>0时,函数在(0,$\sqrt{a}$]单调递减,在[$\sqrt{a}$,+∞)单调递增.定义在(0,+∞)上的函数f(x)=|t(x+$\frac{4}{x}$)-5|,其中t>0.
(1)若函数f(x)分别在区间(0,2)和(2,+∞)上单调,求t的取值范围
(2)当t=1时,若方程f(x)-k=0有四个不相等的实数根x1,x2,x3,x4,求x1+x2+x3+x4的取值范围
(3)当t=1时,是否存在实数a,b且0<a<b≤2,使得f(x)在区间[a,b]上的取值范围是[ma,mb],若存在,求出实数m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.对于函数f(x)定义域中任意的x1,x2(x1≠x2),有如下结论:
①f(x1+x2)=f(x1)f(x2),
②f(x1•x2)=f(x1)+f(x2),
③$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}<0$,
④$f({\frac{{{x_1}+{x_2}}}{2}})>\frac{{f({x_1})+f({x_2})}}{2}$,
当f(x)=lnx时,上述结论中正确结论的序号是②④.

查看答案和解析>>

同步练习册答案