精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,侧面是等边三角形,且平面平面的中点,

1)求证:平面

2)求二面角的余弦值;

【答案】1)证明见解析;(2

【解析】

(1)取中点,由中位线性质可知,由此可得,证得,根据线面平行的判定定理即可证得结论;

2)取中点,由面面垂直性质可知平面,结合平行关系知,由此可建立以为原点的空间直角坐标系,利用二面角的向量求法求得结果.

(1)取中点,连结

分别为中点,

四边形为平行四边形

平面平面 平面

2)取中点,连接

等边三角形

平面平面,平面平面平面

四边形为平行四边形

则以为坐标原点,可建立如图所示空间直角坐标系

设平面的一个法向量为

,令,则

显然,平面的一个法向量为

二面角为锐二面角 二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】近年来,国资委.党委高度重视扶贫开发工作,坚决贯彻落实中央扶贫工作重大决策部署,在各个贫困县全力推进定点扶贫各项工作,取得了积极成效,某贫困县为了响应国家精准扶贫的号召,特地承包了一块土地,已知土地的使用面积以及相应的管理时间的关系如下表所示:

土地使用面积(单位:亩)

1

2

3

4

5

管理时间(单位:月)

8

10

13

25

24

并调查了某村300名村民参与管理的意愿,得到的部分数据如下表所示:

愿意参与管理

不愿意参与管理

男性村民

150

50

女性村民

50

1)求出相关系数的大小,并判断管理时间与土地使用面积是否线性相关?

2)是否有99.9%的把握认为村民的性别与参与管理的意愿具有相关性?

3)若以该村的村民的性别与参与管理意愿的情况估计贫困县的情况,则从该贫困县中任取3人,记取到不愿意参与管理的男性村民的人数为,求的分布列及数学期望。

参考公式:

其中。临界值表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若不等式的解集为,求a的值;

(2)在(1)的条件下,若存在,使,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:直线关于圆的圆心距单位圆心到直线的距离与圆的半径之比.

1)设圆,求过点的直线关于圆的圆心距单位的直线方程.

2)若圆轴相切于点,且直线关于圆的圆心距单位,求此圆的方程.

3)是否存在点,使过点的任意两条互相垂直的直线分别关于相应两圆的圆心距单位始终相等?若存在,求出相应的点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点分别是椭圆的左顶点和上顶点,为其右焦点,,且该椭圆的离心率为

1)求椭圆的标准方程;

2)设点为椭圆上的一动点,且不与椭圆顶点重合,点为直线轴的交点,线段的中垂线与轴交于点,若直线斜率为,直线的斜率为,且为坐标原点),求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】第二届中国国际进口博览会于2019115日至10日在上海国家会展中心举行.它是中国政府坚定支持贸易自由化和经济全球化,主动向世界开放市场的重要举措,有利于促进世界各国加强经贸交流合作,促进全球贸易和世界经济增长,推动开放世界经济发展.某机构为了解人们对“进博会”的关注度是否与性别有关,随机抽取了100名不同性别的人员(男、女各50名)进行问卷调查,并得到如下列联表:

男性

女性

合计

关注度极高

35

14

49

关注度一般

15

36

51

合计

50

50

100

1)根据列联表,能否有99.9%的把握认为对“进博会”的关注度与性别有关;

2)若从关注度极高的被调查者中按男女分层抽样的方法抽取7人了解他们从事的职业情况,再从7人中任意选取2人谈谈关注“进博会”的原因,求这2人中至少有一名女性的概率.

附:.

参考数据:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一青蛙从点开始依次水平向右和竖直向上跳动,其落点坐标依次是(如图,的坐标以已知条件为准)表示青蛙从点到点所经过的路程.

(1)为抛物线准线上一点,点均在该抛物线上,并且直线经过该抛物线的焦点,证明

(2)若点要么落在所表示的曲线上,要么落在所表示的曲线上,并且,试写出(不需证明)

(3)若点要么落在所表示的曲线上,要么落在所表示的曲线上,并且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,下列说法正确的是__________.的值域是时,方程有两个不等实根;若函数有三个零点时,则经过有三条直线与相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆),过原点的两条直线分别与交于点,得到平行四边形.

1)若,且为正方形,求该正方形的面积.

2)若直线的方程为关于轴对称,上任意一点的距离分别为,证明:.

3)当为菱形,且圆内切于菱形时,求满足的关系式.

查看答案和解析>>

同步练习册答案