精英家教网 > 高中数学 > 题目详情

【题目】执行如图所示的程序框图,输出的结果是(
A.﹣2
B.
C.
D.3

【答案】C
【解析】解:模拟执行程序,可得
a= ,k=0
执行循环体,a=3,k=1
不满足条件k≥100,执行循环体,a=﹣2,k=2
不满足条件k≥100,执行循环体,a=﹣ ,k=3
不满足条件k≥100,执行循环体,a= ,k=4

观察规律可得a的取值周期为4,由于99=24×4+3,可得
不满足条件k≥100,执行循环体,a= ,k=100,
此时,满足条件k≥100,退出循环,输出a的值为
故选:C.
【考点精析】解答此题的关键在于理解程序框图的相关知识,掌握程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形;一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为2的正方形,分别为的中点,平面平面,且.

(1)求证:平面

(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)当时,求函数的单调区间.

(2)当时,讨论函数图象的交点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=2lnx

)若a1,求函数fx)的极值;

)若函数fx)在区间[12]上为单调递增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB= ,AF=1,M是线段EF的中点.

(1)求证AM∥平面BDE;
(2)求二面角A﹣DF﹣B的大小;
(3)试在线段AC上一点P,使得PF与CD所成的角是60°.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着网络时代的进步,流量成为手机的附带品,人们可以利用手机随时随地的浏览网页,聊天,看视频,因此,社会上产生了很多低头族.某研究人员对该地区18∽50岁的5000名居民在月流量的使用情况上做出调查,所得结果统计如下图所示:

(Ⅰ)以频率估计概率,若在该地区任取3位居民,其中恰有位居民的月流量的使用情况

在300M∽400M之间,求的期望

(Ⅱ)求被抽查的居民使用流量的平均值;

(Ⅲ)经过数据分析,在一定的范围内,流量套餐的打折情况与其日销售份数成线性相关

关系,该研究人员将流量套餐的打折情况与其日销售份数的结果统计如下表所示:

折扣

1

2

3

4

5

销售份数

50

85

115

140

160

试建立关于的的回归方程.

附注:回归方程中斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面,底面为矩形,且的中点.

(1)过点作一条射线,使得,求证:平面 平面

(2)求二面角的余弦值的绝对值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确的是(
A.若ξ服从正态分布N(0,2),且P(ξ>2)=0.4,则P(0<ξ<2)=0.2
B.x=1是x2﹣x=0的必要不充分条件
C.直线ax+y+2=0与ax﹣y+4=0垂直的充要条件为a=±1
D.“若xy=0,则x=0或y=0”的逆否命题为“若x≠0或y≠0,则xy≠0”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分) 命题实数x满足(其中),命题实数满足

)若,且为真,求实数的取值范围;

)若 的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

同步练习册答案