精英家教网 > 高中数学 > 题目详情
已知:函数f(x)=[x[x]](x∈R),其中[x]表示不超过x的最大整数.
如[-2.1]=-3,[-3]=-3,[2.5]=2.
(1)判断f(x)的奇偶性;
(2)若x∈[-2,3],求f(x)的值域;
(3)若x∈[0,n](n∈N*),f(x)的值域为An,现将An,中的元素的个数记为an.试求an+1与an的关系,并进一步求出an的表达式.
【答案】分析:(1)根据函数f(x)=[x[x]](x∈R)的定义可得:f(-)≠f(),f(-)≠-f(),故f(x)为非奇非偶函数;
(2)先对x的取值进行分类讨论:当-2≤x<-1时;当-1≤x<0时;当0≤x<1时;当1≤x<2时;当2≤x<3时;故所求f(x)的值域为{0,1,2,3,4,5,9};
(3)分类讨论:当n<x<n+1时;当x=n+1时;因此,可得an+1=an+n,又由(2)知,a1=2,利用an=(a2-a1)+(a3-a2)+…+(an-an-1)+a1求出an的表达式即可.
解答:解:(1)∵f()=[[]]=[•1]=[]=1,
f(-)=[-[-]]=[-•(-2)]=[3]=3,
∴f(-)≠f(),f(-)≠-f(),故f(x)为非奇非偶函数.(4分)
(2)当-2≤x<-1时,[x]=-2,则2<x[x]≤4,∴f(x)可取2,3,4;
当-1≤x<0时,[x]=-1,则0<x[x]≤1,∴f(x)可取0,1;
当0≤x<1时,[x]=0,则x[x]=0,∴f(x)=0;
当1≤x<2时,[x]=1,则1≤x[x]<2,∴f(x)=1;
当2≤x<3时,[x]=2,则4≤x[x]<6,∴f(x)可取4,5;
又f(3)=[3[3]]=9,
故所求f(x)的值域为{0,1,2,3,4,5,9},(9分)
(3)当n<x<n+1时,[x]=n,则 n2<x[x]<n(n+1),
故f(x)可取n2,n2+1,n2+2,…,n2+n-1,
当x=n+1时,f(n+1)=(n+1)2
又当x∈[0,n]时,显然有f(x)≤n2
因此,可得an+1=an+n,又由(2)知,a1=2,
∴an=(a2-a1)+(a3-a2)+…+(an-an-1)+a1
=(2-1)+(3-1)+(4-1)+1…+(n-1)+2
==(14分)
点评:本小题主要考查函数单调性的应用、函数奇偶性的应用、不等式的解法等基础知识,考查运算求解能力,考查化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知奇函数f(x)在(-∞,0)∪(0,+∞)上有意义,且在(0,+∞)上是减函数,f(1)=0,又有函数g(θ)=sin2θ+mcosθ-2m,θ∈[0,
π2
],若集合M={m|g(θ)<0},集合N={m|f[g(θ)]>0}.
(1)解不等式f(x)>0;
(2)求M∩N.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)的定义域为(-1,1),当x∈(0,1)时,f(x)=
2x2x+1

(1)求f(x)在(-1,1)上的解析式;
(2)判断f(x)在(0,1)上的单调性,并证明之.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数f(x)=xa的图象过点(
1
2
2
2
)
,则f(x)在(0,+∞)单调递

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)在区间(a,b)上是减函数,证明f(x)在区间(-b,-a)上仍是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:函数f(x)=x3-6x2+3x+t,t∈R.
(1)①证明:a3-b3=(a-b)(a2+ab+b2
②求函数f(x)两个极值点所对应的图象上两点之间的距离;
(2)设函数g(x)=exf(x)有三个不同的极值点,求t的取值范围.

查看答案和解析>>

同步练习册答案