【题目】为贯彻落实党中央全面建设小康社会的战略部署,某贫困地区的广大党员干部深入农村积极开展“精准扶贫”工作.经过多年的精心帮扶,截至2018年底,按照农村家庭人均年纯收入8000元的小康标准,该地区仅剩部分家庭尚未实现小康.现从这些尚未实现小康的家庭中随机抽取50户,得到这50户家庭2018年的家庭人均年纯收入的频率分布直方图,如图.
注:在频率分布直方图中,同一组数据用该区间的中点值作代表.
(1)估计该地区尚未实现小康的家庭2018年家庭人均年纯收入的平均值;
(2)2019年7月,为估计该地能否在2020年全面实现小康,收集了当地最贫困的一户家庭2019年1至6月的人均月纯收入的数据,作出散点图如下.
根据相关性分析,发现其家庭人均月纯收入与时间代码之间具有较强的线性相关关系(记2019年1月、2月……分别为,,…,依此类推).试预测该家庭能否在2020年实现小康生活.
参考数据:,.
参考公式:线性回归方程中,,.
科目:高中数学 来源: 题型:
【题目】下表是某公司年月份研发费用(百万元)和产品销量 (万台)的具体数据:
月 份 | ||||||||
研发费用(百万元) | ||||||||
产品销量(万台) |
(1)根据数据可知与之间存在线性相关关系,用线性相关系数说明与之间的相关性强弱程度
(2)求出与的线性回归方程(系数精确到),并估计当研发费用为(百万元)时该产品的销量.
参考数据:,,,
参照公式:相关系数,其回归直线中的
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的左焦点为.
(1)求椭圆的离心率;
(2)设为坐标原点,为直线上一点,过作的垂线交椭圆于,.当四边形是平行四边形时,求四边形的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数,被称为狄利克雷函数.以下说法正确的是( ).
A.的值域是
B.,都有
C.存在非零实数,使得
D.对任意,都有
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,,.函数的导函数在上存在零点.
求实数的取值范围;
若存在实数,当时,函数在时取得最大值,求正实数的最大值;
若直线与曲线和都相切,且在轴上的截距为,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的准线与x轴的交点为H,点F为抛物线的焦点,点P在抛物线上且,当k最大时,点P恰好在以H,F为焦点的双曲线上,则k的最大值为_____,此时该双曲线的离心率为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—4:坐标系与参数方程
平面直角坐标系xOy中,曲线C:.直线l经过点P(m,0),且倾斜角为.O为极点,以x轴正半轴为极轴,建立极坐标系.
(Ⅰ)写出曲线C的极坐标方程与直线l的参数方程;
(Ⅱ)若直线l与曲线C相交于A,B两点,且|PA|·|PB|=1,求实数m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,PA=AB=1,
(1)证明:BD⊥平面PAC;
(2)若E是PC的中点,F是棱PD上一点,且BE∥平面ACF,求二面角F﹣AC﹣D的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com