精英家教网 > 高中数学 > 题目详情
12.已知直线l1:ax+(a+2)y+1=0,l2:x+ay+2=0(a∈R),则“l1∥l2”是“a=-1”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要

分析 求出直线平行的充分必要条件,根据集合的包含关系判断即可.

解答 解:若直线l1和l2平行,
则$\frac{a}{1}$=$\frac{a+2}{a}$≠$\frac{1}{2}$,
解得:a=2或a=-1,
故“l1∥l2”是“a=-1”的必要不充分条件,
故选:B.

点评 本题考查了充分必要条件,考查直线的平行根关系以及集合的包含关系,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{3}}}{2}$,直线l:x-y+1=0交椭圆于A,B两点,交y轴于C点,若$3\overrightarrow{AB}=2\overrightarrow{BC}$,则椭圆的方程是x2+4y2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.过点(3,0)的l与圆x2+y2+x-6y+3=0相交于P,Q两点,且OP⊥OQ(O为原点),求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知数列{an}满足a1=1,且${a_n}=2{a_{n-1}}+{2^n}$(n≥2,n∈N*),则an=(2n-1)•2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)是定义在R上的奇函数,且在区间[0,+∞)上单调递减.
(1)写出f(x)在R上的单调性(不用证明);
(2)若f(1-a)+f(2a-5)<0,请求出实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知定义在正实数集上的函数f(x)、g(x),g(x)≠0,f(x)=logax•g(x)(a>0且a≠1),f′(x)g(x)<f(x)g′(x),若关于t的方程[g(4)•t]2+1=f(4)•t有唯一解,则a的值为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.2D.$\frac{1}{2}$或2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)已知椭圆经过点A(0,$\frac{5}{3}$)和B(1,1),求椭圆的标准方程.
(2)若抛物线y2=2px(p>0)上的一点M 到焦点及对称轴的距离分别为10和6,求抛物线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.8次投篮中,投中3次,其中恰有2次连续命中的情形有30种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.对于集合M,N,定义:M-N={x|x∈M且x∉N},M⊕N=(M-N)∪(N-M).设集合M={y|y=x2-4x+3,x∈R},N={y|y=-2x,x∈R},则M⊕N=(  )
A.(-∞,-1)∪[0,+∞)B.[-1,0)C.(-1,0]D.(-∞,-1]∪(0,+∞)

查看答案和解析>>

同步练习册答案