£¨2013•¾²°²Çøһģ£©ÒÑÖªÍÖÔ²
x2
a2
+
y2
b2
=1
µÄÁ½¸ö½¹µãΪF1£¨-c£¬0£©¡¢F2£¨c£¬0£©£¬c2ÊÇa2Óëb2µÄµÈ²îÖÐÏÆäÖÐa¡¢b¡¢c¶¼ÊÇÕýÊý£¬¹ýµãA£¨0£¬-b£©ºÍB£¨a£¬0£©µÄÖ±ÏßÓëÔ­µãµÄ¾àÀëΪ
3
2
£®
£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©¹ýµãA×÷Ö±Ïß½»ÍÖÔ²ÓÚÁíÒ»µãM£¬Çó|AM|³¤¶ÈµÄ×î´óÖµ£»
£¨3£©ÒÑÖª¶¨µãE£¨-1£¬0£©£¬Ö±Ïßy=kx+tÓëÍÖÔ²½»ÓÚC¡¢DÏàÒìÁ½µã£®Ö¤Ã÷£º¶ÔÈÎÒâµÄt£¾0£¬¶¼´æÔÚʵÊýk£¬Ê¹µÃÒÔÏ߶ÎCDΪֱ¾¶µÄÔ²¹ýEµã£®
·ÖÎö£º£¨1£©ÀûÓÃc2ÊÇa2Óëb2µÄµÈ²îÖÐÏ¿ÉµÃc2=a2-b2=
a2+b2
2
£¬Éè³öÖ±Ïß·½³Ì£¬ÀûÓÃÖ±ÏßÓëÔ­µãµÄ¾àÀëΪ
3
2
£¬½¨Á¢µÈʽ£¬Çó³ö¼¸ºÎÁ¿£¬¼´¿ÉÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©ÉèMµÄ×ø±ê£¬±íʾ³ö|AM|2£¬¼´¿ÉÇó|AM|³¤¶ÈµÄ×î´óÖµ£»
£¨3£©Ö±Ïß·½³Ì´úÈëÍÖÔ²·½³Ì£¬ÀûÓÃΤ´ï¶¨Àí¼°ÒÔCDΪֱ¾¶µÄÔ²¹ýEµã£¬½áºÏÏòÁ¿ÖªÊ¶£¬¼´¿ÉµÃµ½½áÂÛ£®
½â´ð£º£¨1£©½â£ºÔÚÍÖÔ²ÖУ¬ÓÉÒÑÖªµÃc2=a2-b2=
a2+b2
2
£¨1·Ö£©
¹ýµãA£¨0£¬-b£©ºÍB£¨a£¬0£©µÄÖ±Ïß·½³ÌΪ
x
a
+
y
-b
=1
£¬¼´bx-ay-ab=0£¬
¸ÃÖ±ÏßÓëÔ­µãµÄ¾àÀëΪ
3
2
£¬Óɵ㵽ֱÏߵľàÀ빫ʽµÃ£º
ab
a2+b2
=
3
2
£¨3·Ö£©
½âµÃ£ºa2=3£¬b2=1£¬ËùÒÔÍÖÔ²·½³ÌΪ
x2
3
+
y2
1
=1
£¨4·Ö£©
£¨2£©½â£ºÉèM£¨x£¬y£©£¬Ôòx2=3£¨1-y2£©£¬|AM|2=x2+£¨y+1£©2=-2y2+2y+4£¬ÆäÖÐ-1¡Üy¡Ü1£¨16·Ö£©
µ±y=
1
2
ʱ£¬|AM|2È¡µÃ×î´óÖµ
9
2
£¬ËùÒÔ|AM|³¤¶ÈµÄ×î´óֵΪ
3
2
2
£¨9·Ö£©
£¨3£©Ö¤Ã÷£º½«y=kx+t´úÈëÍÖÔ²·½³Ì£¬µÃ£¨1+3k2£©x2+6ktx+3t2-3=0£¬
ÓÉÖ±ÏßÓëÍÖÔ²ÓÐÁ½¸ö½»µã£¬ËùÒÔ¡÷=£¨6kt£©2-12£¨1+3k2£©£¨t2-1£©£¾0£¬½âµÃk2£¾
t2-1
3
£¨11·Ö£©
ÉèC£¨x1£¬y1£©¡¢D£¨x2£¬y2£©£¬Ôòx1+x2=-
6kt
1+3k2
£¬x1x2=
3(t2-1)
1+3k2
£¬
ÒòΪÒÔCDΪֱ¾¶µÄÔ²¹ýEµã£¬ËùÒÔ
EC
ED
=0
£¬¼´£¨x1+1£©£¨x2+1£©+y1y2=0£¬£¨13·Ö£©
¶øy1y2=£¨kx1+t£©£¨kx2+t£©=k2x1x2+tk(x1+x2)+t2£¬
ËùÒÔ(k2+1)
3(t2-1)
1+3k2
-(tk+1)
6kt
1+3k2
+t2+1=0
£¬½âµÃk=
2t2-1
3t
£¨14·Ö£©
Èç¹ûk2£¾
t2-1
3
¶ÔÈÎÒâµÄt£¾0¶¼³ÉÁ¢£¬Ôò´æÔÚk£¬Ê¹µÃÒÔÏ߶ÎCDΪֱ¾¶µÄÔ²¹ýEµã£®(
2t2-1
3t
)2-
t2-1
3
=
(t2-1)2+t2
9t2
£¾0
£¬¼´k2£¾
t2-1
3
£®
ËùÒÔ£¬¶ÔÈÎÒâµÄt£¾0£¬¶¼´æÔÚk£¬Ê¹µÃÒÔÏ߶ÎCDΪֱ¾¶µÄÔ²¹ýEµã£®£¨16·Ö£©
µãÆÀ£º±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØϵ£¬¿¼²éΤ´ï¶¨ÀíµÄÔËÓ㬿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•¾²°²Çøһģ£©ÒÑÖªOÊÇ¡÷ABCÍâ½ÓÔ²µÄÔ²ÐÄ£¬A¡¢B¡¢CΪ¡÷ABCµÄÄڽǣ¬Èô
cosB
sinC
AB
+
cosC
sinB
AC
=2m•
AO
£¬ÔòmµÄֵΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•¾²°²Çøһģ£©ÉèPÊǺ¯Êýy=x+
2
x
£¨x£¾0£©µÄͼÏóÉÏÈÎÒâÒ»µã£¬¹ýµãP·Ö±ðÏòÖ±Ïßy=xºÍyÖá×÷´¹Ïߣ¬´¹×ã·Ö±ðΪA¡¢B£¬Ôò
PA
PB
µÄÖµÊÇ
-1
-1
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•¾²°²Çøһģ£©ÒÑÖªº¯Êýf£¨x£©=
1
2
sin£¨2ax+
2¦Ð
7
£©µÄ×îСÕýÖÜÆÚΪ4¦Ð£¬ÔòÕýʵÊýa=
1
4
1
4
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•¾²°²Çøһģ£©µÈ±ÈÊýÁÐ{an}£¨n¡ÊN*£©ÖУ¬Èôa2=
1
16
£¬a5=
1
2
£¬Ôòa12=
64
64
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•¾²°²Çøһģ£©Á½ÌõÖ±Ïßl1£º3x-4y+9=0ºÍl2£º5x+12y-3=0µÄ¼Ð½Ç´óСΪ
arccos
33
65
arccos
33
65
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸