【题目】已知向量m=(3sinx,cosx),n=(-cosx, cosx),f(x)=m·n-.
(1)求函数f(x)的最大值及取得最大值时x的值;
(2)若方程f(x)=a在区间上有两个不同的实数根,求实数a的取值范围.
科目:高中数学 来源: 题型:
【题目】如图是y=f(x)的导函数的图象,现有四种说法: 1)f(x)在(﹣2,1)上是增函数;
2)x=﹣1是f(x)的极小值点;
3)f(x)在(﹣1,2)上是增函数;
4)x=2是f(x)的极小值点;
以上说法正确的序号是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数g(x)=x2﹣(2a+1)x+alnx (Ⅰ) 当a=1时,求函数g(x)的单调增区间;
(Ⅱ) 求函数g(x)在区间[1,e]上的最小值;
(Ⅲ) 在(Ⅰ)的条件下,设f(x)=g(x)+4x﹣x2﹣2lnx,
证明: > (n≥2).(参考数据:ln2≈0.6931)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2x,g(x)=x2+ax(其中a∈R).对于不相等的实数x1,x2,设m=,n=.现有如下命题:
①对于任意不相等的实数x1,x2,都有m>0;
②对于任意的a及任意不相等的实数x1,x2,都有n>0;
③对于任意的a,存在不相等的实数x1,x2,使得m=n;
④对于任意的a,存在不相等的实数x1,x2,使得m=-n.
其中的真命题有________(写出所有真命题的序号).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是一次函数,g(x)是反比例函数,且满足f[f(x)]=x+2,g(1)=﹣1
(1)求函数f(x)和g(x);
(2)设h(x)=f(x)+g(x),判断函数h(x)在(0,+∞)上的单调性,并用定义加以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图y=f(x)的导函数的图象,现有四种说法:
(1)f(x)在(﹣3,1)上是增函数;
(2)x=﹣1是f(x)的极小值点;
(3)f(x)在(2,4)上是减函数,在(﹣1,2)上是增函数;
(4)x=2是f(x)的极小值点;
以上正确的序号为( )
A.(1)(2)
B.(2)(3)
C.(3)(4)
D.(4)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知复数z=(2m2+3m﹣2)+(m2+m﹣2)i,(m∈R)根据下列条件,求m值.
(1)z是实数;
(2)z是虚数;
(3)z是纯虚数;
(4)z=0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在(0,+∞)上的单调增函数,满足f(xy)=f(x)+f(y),f(3)=1
(1)求f(1)、f( )的值;
(2)若满足f(x)+f(x﹣8)≤2,求x的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)=|lgx|,且0<a<b<c时,有f(a)>f(c)>f(b),则( )
A.(a﹣1)(c﹣1)>0
B.ac>1
C.ac=1
D.ac<1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com