精英家教网 > 高中数学 > 题目详情

【题目】今有一长2米宽1米的矩形铁皮,如图,在四个角上分别截去一个边长为x米的正方形后,沿虚线折起可做成一个无盖的长方体形水箱(接口连接问题不考虑)

(Ⅰ)求水箱容积的表达式,并指出函数的定义域;

(Ⅱ)若要使水箱容积不大于立方米的同时,又使得底面积最大,求x的值.

【答案】(1) {x|0x} (2)

【解析】

(Ⅰ)由已知该长方体形水箱高为x米,底面矩形长为(22x)米,宽(12x)米.

该水箱容积为

f(x)(22x)(12x)x4x36x22x

其中正数x满足∴0x.

所求函数f(x)定义域为{x|0x}

(Ⅱ)f(x)≤4x3,得x ≤ 0x

定义域为{x|0x}x.

此时的底面积为S(x)(22x)(12x)4x26x2

(x∈[)).由S(x)4(x)2

可知S(x)[)上是单调减函数,

x.即满足条件的x.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】将函数的图象向右平移个单位后得到函数的图象,则( )

A. 图象关于直线对称 B. 图象关于点中心对称

C. 在区间单调递增 D. 在区间上单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)设的极值点.求,并求的单调区间;

2)证明:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛掷一个质地均匀的骰子的试验,事件A表示“小于5的偶数点出现”,事件B表示“不小于5的点数出现”,则一次试验中,事件A或事件B至少有一个发生的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 稿酬所得以个人每次取得的收入,定额或定率减除规定费用后的余额为应纳税所得额,每次收入不超过4000元,定额减除费用800元;每次收入在4000元以上的,定率减除20%的费用适用20%的比例税率,并按规定对应纳税额减征30%,计算公式为:

(1)每次收入不超过4000元的:应纳税额=(每次收入额-800)×20%×(1-30%)

(2)每次收入在4000元以上的:应纳税额=每次收入额×(1-20%)×20%×(1-30%)已知某人出版一份书稿,共纳税280元,这个人应得稿费(扣税前)为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=ex1+alnx.(e为自然对数的底数),λmin{a+25}.(min{ab}表示ab中较小的数.)

1)当a0时,设gx)=fx)﹣x,求函数gx)在[]上的最值;

2)当x1时,证明:fx+x2λx1+2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】射击测试有两种方案,方案1:先在甲靶射击一次,以后都在乙靶射击;方案2:始终在乙靶射击,某射手命中甲靶的概率为,命中一次得3分;命中乙靶的概率为,命中一次得2分,若没有命中则得0分,用随机变量表示该射手一次测试累计得分,如果的值不低于3分就认为通过测试,立即停止射击;否则继续射击,但一次测试最多打靶3次,每次射击的结果相互独立。

(1)如果该射手选择方案1,求其测试结束后所得分的分布列和数学期望E

(2)该射手选择哪种方案通过测试的可能性大?请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足 .

1)证明: 是等比数列;

(2)令求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是函数定义域的一个子集,若存在,使得成立,则称的一个“准不动点”,也称在区间上存在准不动点,已知.

(1)若,求函数的准不动点;

(2)若函数在区间上存在准不动点,求实数的取值范围.

查看答案和解析>>

同步练习册答案