精英家教网 > 高中数学 > 题目详情
已知空间四边形ABCD中,G为△BCD的重心,E、F、H分别为边CD、AD和BC的中点.化简下列各表达式,并标出化简结果的向量.

(1)++;

(2) (+-);

(3) ++.

解析:(1)∵G是△BCD的重心,

∴||=||.

=.

又∵ =,

∴由向量加法的三角形法则可知

+=+=,+=.

从而++=.

(2)(+-)= (2-)=-

=-=.?

(3)∵G是△BCD的重心,?

∴猜想++)=.事实上,

=+ =+?

=+×(+)

=+[(-)+(-)]?

=(++).


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知空间四边形ABCD中,BC=AC,AD=BD,E是AB的中点.
求证:
(1)AB⊥平面CDE;
(2)平面CDE⊥平面ABC;
(3)若G为△ADC的重心,试在线段AE上确定一点F,使得GF∥平面CDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知空间四边形ABCD中,BC=AC,AD=BD,E是AB的中点.
求证:(1)AB⊥平面CDE;
(2)平面CDE⊥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知空间四边形ABCD中,BC=AC,AD=BD,E是AB的中点,求证:
(1)AB⊥平面CDE;
(2)平面CDE⊥平面ABC;
(3)若G为△ADC的重心,试在线段AE上确定一点F,使得GF∥平面CDE.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年河南省高三12月月考文科数学卷 题型:解答题

(本小题满分12分)

如图,已知空间四边形ABCD中,BC=AC, AD=BD,E是AB的中点,

求证:

AB⊥平面CDE;

平面CDE⊥平面ABC;

若G为△ADC的重心,试在线段AB上确定一点F,使得GF∥平面CDE.

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知空间四边形ABCD中,BC=AC,AD=BD,E是AB的中点.
求证:
(1)AB⊥平面CDE;
(2)平面CDE⊥平面ABC;
(3)若G为△ADC的重心,试在线段AE上确定一点F,使得GF平面CDE.
精英家教网

查看答案和解析>>

同步练习册答案